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Abstract

We develop a general framework for optimizing the content of marketing communications by

adapting a language model to past A/B test results. We fine-tune a language model to transform

lower-performing content into higher-performing variants, teaching it to perform hill-climbing

in the space of text. When deployed, the model generates improvements to marketing content

proposed by humans. This design ensures that AI assistance is unlikely to harm performance,

which mitigates implementation risks and facilitates organizational adoption. We validate our

framework through a large-scale field experiment in email marketing. In 36 campaigns covering 283

million total impressions, subject lines created with assistance from our tuned model achieve click-

through rates 33% higher than those created by unassisted human experts. These performance

gains are causally attributable to improvements in content quality, confirming the effectiveness

of our framework. Additionally, a general-purpose language model with 30x the parameters fails

to improve outcomes while our smaller fine-tuned model succeeds, demonstrating that domain-

specific adaptation is necessary and relatively small language models are sufficient. Our findings

provide experimental evidence that language models can extract generalizable insights from A/B

tests, enabling systematic optimization of unstructured marketing decisions from copywriting to

creative design.
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1 Introduction

Firms routinely conduct A/B tests to optimize the content of their marketing communications,

from promotional emails to social media ads. While these experiments identify the best performer

among tested variants, they provide limited guidance for creating new content. We develop and

validate a novel approach that extracts generalizable insights from historical A/B test results to

systematically improve marketing content creation.

Optimizing unstructured content is a fundamentally difficult problem. For structured decision

variables like price, firms can estimate predictive models (e.g. a demand curve) and solve for the

optimal action. However, this approach does not work for unstructured decision variables like the

text of an advertisement or the visual appearance of a product. A predictive model for the click-

through rate of advertising text does not reveal what the optimal text is. Typical practice instead

uses the predictive model to rank human-generated ideas in an ad hoc fashion. We show how to

leverage generative AI to improve this process.

The core insight of our approach is that A/B tests provide rich causal evidence about what

makes marketing content effective. Individual A/B tests establish causal relationships between

content changes and outcomes through randomization. Multiple A/B tests together should contain

common features that distinguish high-performing content from low-performing content. We extract

this information by fine-tuning a language model on results from past experiments, training it

to transform lower-performing content into higher-performing variants. Essentially, we teach the

language model to perform hill-climbing in the space of marketing text. When deployed, the model

generates improvements to human-proposed content. This human-proposing/AI-improving design

ensures AI assistance is unlikely to harm performance, facilitating organizational adoption.

We validate our framework through a large-scale field experiment in email marketing. Using

a language model fine-tuned on subject lines from 20,000 past campaigns, we test its effective-

ness in 36 new campaigns totaling 283 million impressions. Subject lines created with assistance

from our tuned model achieve click-through rates 33% higher than those created by unassisted

human experts. Moreover, assistance from a general-purpose language model with 30 times the

parameters fails to improve outcomes. This demonstrates that domain-specific data linking text

to business outcomes is necessary and relatively small models are sufficient. We also find evidence

of complementarity between human expertise and AI, with the gain from AI assistance largest in

instances where unassisted humans perform worse. While our experiment focuses on email market-

ing, our approach extends naturally to other domains with unstructured decisions like advertising

copywriting and product design.

Our primary contributions are:

1. We develop a practical framework for extracting generalizable insights from previous A/B tests:

“A better than B” means “turn B into A”.

2. We provide experimental evidence that language models fine-tuned with our approach can

systematically improve marketing decisions in new contexts.
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We also contribute to broader questions about human-AI collaboration in decision-making tasks.

Our framework enables AI assistance that significantly improves human decision quality while

maintaining appropriate safeguards, as we train a language model to optimize engagement metrics

while preserving secondary objectives like factual accuracy. The framework also allows for explicit

structure to be imposed on the generated content. In our experiment, we show how to control and

optimize the emotional valence of generated text, blending traditional marketing principles with

generative AI capabilities. These results suggest promising directions for developing AI systems

that complement rather than replace human expertise.

There is an active literature on predicting the performance of marketing content, e.g. Yang

and Zhai (2022) review techniques for predicting the click-through rate of online advertisements.

We show how to combine such predictive models with a generative model to obtain prescriptive

recommendations. We also add to work on estimating causal effects to guide decision-making. There

are many papers on this topic; a few examples are Yoganarasimhan et al. (2020), which runs an

experiment to optimize the length of software free trials, and Dubé and Misra (2023), which runs

an experiment to find the profit-maximizing price. These are both low-dimensional treatments; we

consider a similar problem but for a high-dimensional treatment. Ellickson et al. (2023) estimate

the effects of a high-dimensional treatment also in the setting of email subject lines. They project

the estimated treatment effects onto manually defined features of the text, like indicator variables

for the presence of key words. Their approach yields an interpretable decomposition of treatment

effects as an intermediate step to optimizing policies. In comparison, we implicitly represent the

treatment within a language model and directly solve for a better policy. By avoiding the need to

explicitly codify features, we operationalize information from the data that is difficult to articulate

(Polanyi (1966)). Additionally, our framework allows for explicit structure to be imposed but does

not require it. We do not address optimal targeting or personalization of treatments in this work,

instead focusing on optimizing the contents of a blanket treatment.

Finally, we add to an empirical line of work on the alignment of language models with different

kinds of objectives. The usefulness of adapting a pretrained language model to a task was first shown

in Dai and Le (2015) and popularized in Devlin et al. (2018). For linguistics tasks like sentiment

classification, they found that training a next-word prediction model on unlabeled text before

updating its parameters on task-specific data increased accuracy. The intuition is that teaching a

model to “understand” language is an informative prior. Recently this approach has been extended

to more complex tasks. Wei et al. (2021) and Ouyang et al. (2022) show the remarkable result that

given examples of instructions and responses, sufficiently large models can learn to follow previously

unseen instructions. Reisenbichler et al. (2022), which our work builds on, show the first direct

adaptation of language models to maximizing a business outcome, fine-tuning GPT-2 (Radford

et al. (2019)) to generate performant SEO content. Similarly to their setup, we design our model

to optimize text generation for a business outcome. But instead of using signals from an external

algorithm (features of existing high-ranking results on Google), we extract informative signals from

firms’ historical data, further broadening the scope of applications for language models to generic

business objectives.
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The remainder of this paper is organized as follows: Section 2 introduces our general framework,

and Section 3 gives details on the email marketing task and dataset. Section 4 describes our training

and inference procedures. Section 5 covers the results from our validation experiment, discusses

human-AI complementarity, and analyzes the quality of AI-generated output. Section 6 concludes.

Implementation details not critical to understanding the main idea are covered in the appendices.

2 General Framework

Many business decisions can be expressed as optimization problems where a context x and decision

y lead to an outcome or “reward” r(x, y). For example, x may be a product’s features, y its price,

and r(x, y) the profit. Letting ϕ denote additional parameters of the reward, like the elasticity of

demand, a typical decision rule is to maximize the predicted reward:

y∗(x) = argmax
y

r(x, y;ϕ).

ϕ can be estimated from historical data of the form D = {(xi, yi, ri)}Ni=1.

When r is differentiable in y, e.g. if y is a real-valued quantity like a price, r(x, y;ϕ) can be

maximized by gradient ascent. When y is unstructured, however, like the visual appearance of a

product or the text in an advertisement, the optimization problem is intractable even if a high

quality predictive model of r is available. Gradients no longer exist, and the space of possible

decisions is too large to exhaustively evaluate.

A heuristic solution is to rely on a domain expert who generates what they believe are promising

candidate decisions y1, y2, y3, . . . and uses the predictive model r(x, y;ϕ) to rank them. Yet this

approach is limited, as it does not provide constructive guidance on what decision the expert should

choose. That process is left to a mix of intuition and ad hoc interactions between the expert and

the predictive model.

Our procedure for optimizing decisions in unstructured action spaces leverages the capabilities

of generative models. While we focus on decisions that take the form of text, the same approach

should work for other modalities like images.

Consider the following procedure for maximizing the reward:

1. Generate y∗ ∼ G(y|x; θ), where G is the output distribution of a language model with parameters

θ.

2. Fine-tune θ so that G generates actions with high predicted reward:

max
θ

Ex∼D,y∼G(y|x;θ)[r(x, y;ϕ)]. (1)

Solving this optimization problem, however, creates three new issues. First, estimation error in

the reward model will lead G(y|x; θ) to overfit to the estimated reward and generate unrealistic text

(Christiano et al. (2017)). Second, specification error where the reward does not perfectly capture

real-world objectives will lead to undesirable text (Amodei et al. (2016)). Lastly, the distribution
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G(y|x; θ) could perform much worse than predicted on new data (Amodei et al. (2016)). For these

reasons, fully delegating decisions to an AI is infeasible in many practical settings.

We prevent unrealistic output by regularizing G(y|x; θ). After initializing θ at the parameters

θ0 of a pre-trained language model known to generate realistic text, we terminate the optimization

procedure early to limit the drift of the fine-tuned model from G(y|x; θ0).
We address undesirable output from misspecified reward by collecting additional data on which

outputs humans consider acceptable. We filter generated output based on a model learned from

this data. The most common issues with AI-generated output are related to factual accuracy, and

our learned model is successfully able to identify these instances.

Finally, in our main methodological innovation, we ensure robust performance by designing our

language model to improve rather than replace humans. Given a new context x, instead of directly

generating a decision y from a language model, we first solicit a decision y from a human expert

then ask the model to generate a better decision y′. In a happy coincidence, this suggests a struc-

ture for the fine-tuning task that is readily compatible with data from past experiments. In these

experiments, multiple decisions were taken for each context, so we fine-tune the language model to

convert worse decisions into better ones. This procedure can be viewed as teaching the language

model to do hill-climbing in text space. The rationale for this design is that if the human deci-

sion is safe but suboptimal, while a language model acting autonomously could be catastrophically

bad, anchoring the model on the human decision limits the downside risk. This design is practi-

cally useful as well, since at least in the near term, businesses may be reluctant to fully delegate

decision-making tasks to AI.

We confirm in a field experiment that our framework performs as intended, with decisions

assisted by our tuned language model outperform a human expert. This experimental evaluation

ensures that the observed performance improvements are from genuine improvements in decision

quality and not artifacts of the estimated reward model. In the next sections, we describe the setting

in which we evaluate our framework.

3 Task and Data Description

Email marketing is one of the most common and effective ways for firms to communicate with

their customers. In these emails, a compelling subject line can grab the reader’s attention, increase

open rates, and ultimately drive more conversions. Effect sizes are economically significant; in our

sample, the best subject line in a campaign attained response metrics that were on average 73% and

up to 445% higher than the worst one. However, crafting effective subject lines can be a challenging

task, especially for marketers who have to constantly come up with new ideas and variations.

We focus on the task of designing effective marketing email subject lines. Given a topic, the

goal is to generate subject line text with a high click rate while remaining relevant and appropriate.

Clicks are defined as events where the recipient clicks a link inside the email. We use clicks rather

than email opens as the target outcome because they are more reliably measured and a better

surrogate for downstream outcomes.
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Our training data comes from 10 years of marketing campaigns from a private marketing

platform. For each campaign, various subject lines were tested, and click rates were recorded.

The campaigns come from 337 well-known brands spanning various industries including retail, e-

commerce, fashion, financial services, and insurance. The dataset consists of 286k individual subject

lines from 20k campaigns, with each campaign sent to a median of 798k recipients. Each campaign

typically has 16 variants of subject lines auto-generated from a grammar template, where recipi-

ents are randomly assigned and observed differences in subject line performance are interpreted as

causal. Subject lines are 60-100 characters in length.

We label subject lines with a rich set of semantic tags that describe content and emotion. We

will use these tags to steer output from a language model. Details for the descriptive tagging are

in Appendix A and for the emotion tagging are in Appendix B.

4 Model

We first estimate a model on existing data, which in the machine learning literature is called

“training”. Next, we use the trained model to make predictions on new data, which is called

“inference”. Note that inference here is different from traditional statistical inference.

4.1 Training

At a high level, we want a language model to take downstream business objectives into account

when generating. We do this via supervised fine-tuning, which entails taking a pretrained language

model, a dataset with (input, output) pairs of the desired behavior, and updating the parameters

of the pretrained model on the domain-specific data.

Suppose we ran an A/B test, found that A performed better than B, and had some information

about the context in which the experiment was run. We can convert this result into two types of

data for fine tuning:

• Input is the decision context, output is the good decision A

• Input is the worse decision B, output is the better decision A

This teaches the model to do two things. The first is a decision suggester – for a given scenario, what

is a good decision? The second is a decision improver – given a decision, what is a better decision?

The former capability is standard but the latter is novel and practically useful. Observational data

for which analogous conclusions can be drawn can be used here as well.

Our A/B test data comes from previous email marketing campaigns. Subject line variations

are the treatment groups, and campaigns have up to 16 of them. The topic of the campaign is the

context. For fine-tuning, we form training examples in three ways:

• Type 1: Input is a lower performing subject line, output is a higher performing subject line from

the same campaign.

• Type 2: Input is a list of keyphrases describing the topic, output is a subject line that outperforms

at least 50% of variants in its campaign.
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Table 1 Fine-tuning data examples

Type Input Output

1 Hot rates are happening now >>>
Save on your next getaway during this
sale!

>>> Happening Now! You’re About
To Save Big During This Sale <<<

2 new special offer every week | styles you
want | 60% off

To You: Confirming Up to 60% Off the
Styles You Want + Stay Tuned for a
New Special Offer Every Week

3 Have you tried a lacroix-tail? | coupon
inside | lacroix

(1) New notification: Open for drink
recipes featuring LaCroix

• Type 3: Input is a subject line and keyphrases, output is a subject line that outperforms at least

50% of variants in its campaign.

Type 1 is decision improver, and Types 2 and 3 are variants of decision suggester. Examples of each

type of training data are shown in Table 1.

For the pretrained language model, we use T5-base (Raffel et al. (2020)), a relatively small

model with 220 million parameters. Fine-tuning is done with a batch size of 16, learning rate of

0.0003, AdamW optimizer, and run for 3 epochs. Compared to the GPT family, T5 (Text-to-Text

Transfer Transformer) performs especially well when fine-tuned.

Next, we make the emotional valence of the generated output controllable. Past work has shown

that the emotional valence of content is a key driver of engagement (Teixeira et al. (2012)), and

picking the wrong tone/emotion in the subject line is a common reason for inferior performance.

Adapting research in psychology (Gobe (2010)), we develop an emotional ontology which has five

categories: PRIDE, TRUST, JOY, ANTICIPATION, and FEAR. Each top-level category is further

divided into 3 sub categories (see Appendix B for details). Each subject line in our historical

dataset was tagged with the applicable categories. Then, when fine-tuning, the emotional tags of

the output are appended to the input, as shown in Table 2. At inference time, the user can specify

the desired emotion tags in the input, which will steer the emotional tone of the output. This fine-

tuning technique is called conditional training and was previously used to control style and content

in linguistics (Keskar et al. (2019)). This emotion steering step is not required, but it illustrates

how explicit structure can be imposed on the blackbox language model if desired.

To assist the language model, we train a predictive model that takes a subject line as input and

returns the predicted click rate. We find that linear regression on embeddings from BERT works

well (details are in Appendix C). This will be used at inference time to rank outputs from the

language model.

Finally, some guardrails must be implemented before deploying our model in the field. The

main risk is that the language model could say false, irrelevant, or inappropriate things (Bender

et al. (2021)). To address these issues, we train a model of what human experts consider acceptable

and apply a filtering step at inference time. We define a binary metric, which we call “accuracy”,

to take value 1 if the subject line can be used without edits and 0 otherwise. On model outputs
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Table 2 Emotion tagging example

Type Input Output

1 Hot rates are happening now >>>
Save on your next getaway dur-
ing this sale! | CURIOSITY |
GRATIFICATION

>>> Happening Now! You’re About
To Save Big During This Sale <<<

2 new special offer every week
| styles you want | 60% off |
ENCOURAGEMENT | SAFETY |
EXCLUSIVITY

To You: Confirming Up to 60% Off the
Styles You Want + Stay Tuned for a
New Special Offer Every Week

3 Have you tried a lacroix-tail? | coupon
inside | lacroix | CURIOSITY

(1) New notification: Open for drink
recipes featuring LaCroix

Emotion of output is appended to input.

generated from 4600 unique inputs, we collected 100k binary ratings from in-house experts. They

were instructed to rate model outputs as 1 only if:

• Sounds like natural, correct English and conveys the same meaning as input information

• Includes all of the information provided by the keyphrases

Example: keyphrases = new arrivals | summer sales event. “Here are all the new arrivals for our

summer sales event” is acceptable, “Our summer sales event has arrived” is not.

• Is not more specific than the keyphrase information

Example: keyphrase = apply for a home loan. “You’re invited to apply for a home loan” is

acceptable, “This is your last chance to apply for a home loan” is not.

• Does not contain any offensive language

• Does not contain grammatical or spelling errors, i.e. avoids excessive repetition and structures

with multiple intros or outros unless the keyphrases specifically warrant it. If it feels unnatural,

it’s unnatural.

• Is not irrelevant to the keyphrases

Using this data, we train a binary classifier that returns the probability that accuracy=1 given

subject line text. Rather than train a separate model, we add accuracy classification to the pool of

tasks on which our T5 model is fine-tuned. For fine-tuning, the input is the subject line prefixed with

“SL Rating”, and the output is 0 or 1. For inference, we normalize the relative confidence scores

the model places on output tokens of 0 or 1 to obtain a predicted probability that accuracy=1. A

few additional guardrails were implemented, details for which are available in Appendix D.

Overall training costs were modest. The T5-base model was fine-tuned on a V100 GPU ($2.50
per hour on Google Cloud) running for 20 hours.

4.2 Inference

For a new email campaign, the user enters a subject line, topic keyphrases, or both. Optionally,

emotion tags can be provided. If they are not, we generate candidates for multiple emotion tags and
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Outcome
observed

Rank candidates
by predicted
performance

Context
Candidate
Decisions

(1) Candidate
Generation

(2) Candidate
Evaluation

(3) Candidate
Selection

Fig. 1 Inference pipeline: Given a context, a manager makes a decision that induces an outcome. The three key steps
are (1) generating, (2) evaluating, and (3) selecting candidate decisions. (1) is done by a language model, (2) is done
by a predictive model, and (3) is done by a human. Traditionally, (1) was done by a human, which is challenging in
the email marketing copywriting setting.

pass all candidates to the next step, thereby inferring the best emotion for the context. The fine-

tuned model generates many (50-100) candidates, from which candidates with predicted probability

of accuracy=1 below 0.4 are removed. The predictive model ranks the remaining candidates. The

interface presents the top 10 candidates to the user, who makes the final selection. This workflow

is summarized in Figure 1.

Inference costs were also modest. The model is hosted on one p2.xlarge server on AWS ($0.90
per hour), and the server is shared by other production models.

Performance may be improved by running the inference pipeline for multiple iterations. The

output from one iteration can be the input to the next iteration, which will then return a subject

line that is expected to perform better. Doing too many iterations, however, increases the risk of

over-optimizing for performance in undesirable ways. We regularize against this by stopping after

one iteration, so the results from our tuned language model should be viewed as a lower bound on

performance. We leave optimizing the configuration of the pipeline to future work.

5 Results

5.1 Click rates

We evaluate our framework in a field experiment consisting of real email marketing campaigns. The

experiment is conducted by a private marketing platform that offers marketing content optimization

services to clients from a variety of industries. Our models are deployed through a simple user

interface where a Brand Content Strategist (BCS), a non-technical user, can type inputs, click a

“generate” button, and receive model outputs.

For each email campaign in the experiment, the control subject line is the non-optimized,

human-authored subject line that the brand would usually send. The experimental arms measure

the value-added by providing two forms of AI assistance to a human expert. In the first arm, the

campaign topic and control subject line are entered as part of a prompt to ChatGPT, which uses

a general-purpose language model (gpt-3.5-turbo). Details on the prompt are in Appendix E. The

BCS chooses from among the 10 options that ChatGPT suggests. In the second arm, the BCS enters

the control subject line and any additional keyphrases as input to the inference pipeline described

in Section 4.2. Candidate subject lines are generated by our tuned T5 model, filtered based on the

accuracy model, and reranked by a predictive model. The BCS selects a message from the outputs

with a predicted performance higher than the control’s message.
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Fig. 2 Mean click rates over deployed campaigns. Assistance from ChatGPT does not outperform an unassisted
human, while assistance from the tuned model does. Numerical values for means and standard errors are in Table 3.

Table 3 Mean click rates over deployed campaigns in basis points

Click Rate (bp) Count
Model mean s.e. Campaigns Impressions

Control 51.69 0.127 36 31.5m
ChatGPT 51.49 0.063 36 126m
Tuned T5 69.06 0.073 36 126m

In each email campaign, recipients are randomized over the three arms, and whether the recipient

clicked on a link inside the email is recorded. The primary outcome metric is the click rate achieved

in each treatment arm.

The experiment is designed to study complementarity: how much is performance improved

when an AI helps a human? Our design makes it unlikely that either of the experimental arms

will perform worse than the control. This is helpful for feasibility of the experiment; reducing the

downside risk of a new technology makes business partners more willing to agree to test it. The

design is also realistic – at least in the early days, we expect that AI assistance in decision-making

tasks will be deployed with a human expert having oversight. We leave questions of substitutability

(i.e. to what extent AI can replace humans) to future work.

In 36 campaigns totalling 283 million impressions, we find that on average, the ChatGPT-

assisted arm does not improve on unassisted humans while assistance from our model achieves an

average lift of 33%. Average outcomes from aggregating over campaigns are shown in Figure 2,

with raw numbers in Table 3.
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Fig. 3 Marginal distributions of click rates over campaigns. The outcome distribution from our tuned model first
order stochastically dominates the distribution from the control and ChatGPT. Its CDF is shifted to the right, which
means that every percentile is larger. ChatGPT assistance does not help performance but doesn’t hurt it either, which
shows the robustness of our human-initialized/AI-improved design.

For the ChatGPT-assisted treatment arm, Figure 3 compares the full distribution of outcomes

to the control’s. While ChatGPT assistance does not lead to better outcomes, it does not sys-

tematically harm performance, which shows the robustness of our human-proposing/AI-improving

paradigm. The left panel of Figure 4, which plots joint outcomes from individual campaigns, shows

that ChatGPT tends to improve outcomes in campaigns where humans perform worse while wors-

ening outcomes where humans perform better. This implies there could be value in selectively

allocating assistance from ChatGPT.

For our tuned model, Figure 3 shows that it first order stochastically dominates both the control

and ChatGPT. That is, every quantile of the tuned model’s performance is larger than that of the

control and ChatGPT. Equivalently, any decision maker with nondecreasing utility (i.e. everyone)

prefers the distribution of outcomes under our tuned model. In the right panel of Figure 4, we see

the strongest comparison of relative performance: for 35 of 36 email campaigns, our tuned model

outperforms the control.

Assistance from our fine-tuned language model unambiguously adds value but simply prompting

a general-purpose model for high-performing text does not (yet). At least for now, fine-tuning or

some form of domain-specific adaptation is necessary to unlock the full value of A/B test data.
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Fig. 4 Joint distribution of click rates, by campaign. Relative to the control, our tuned model improves outcomes
(shifts points to the right) for 35 out of 36 campaigns. ChatGPT shows mixed results, improving on 19 out of 36
campaigns, but it has a positive effect in campaigns where humans perform worse and a negative effect in campaigns
where humans perform better.

5.2 Complementarity

Next, we investigate how the gains from AI assistance vary across campaigns. Consider the causal

logistic regression model

Pr(Yi = 1|Ti) =
1

1 + exp{−(αk + βkTi)}
,

where Yi is an indicator for whether recipient i clicked on a link inside an email, Ti is an indicator

for whether recipient i was assigned to treatment, and (αk, βk) are campaign-specific coefficients for

campaign k. Denoting the log odds ratio with logit(p) := p
1−p , we can rewrite the logistic regression

model as

logit(Pr(Yi = 1|Ti)) = αk + βkTi,

which makes apparent that βk is the treatment effect of AI assistance on the log odds ratio of clicking

on a marketing email in campaign k, while αk is the log odds ratio in the control group. logit(·) is
monotonic and increasing, so αk can be interpreted as a measure of the click rate performance of

the control group.

We compute the odds ratios for each campaign and treatment arm and compare the resulting

values of βk against αk. For campaigns where the control performs worse, which is consistent with

high difficulty or low effort/ability by the human, the language models are more helpful. This is true

for both the general-purpose and tuned models and is illustrated by the negative slopes in Figure 5.

We quantify this relationship by running the following (descriptive) regression across campaigns:

βk = γ0 + γ1αk + εk
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Fig. 5 Treatment effect from model assistance (βk) vs. baseline performance (αk), measured in log odds ratios. Email
campaigns from our field experiment have a negative correlation between the treatment effect from model assistance
(βk) and the performance of an unassisted human (αk). This is consistent with AI assistance being more helpful in
instances that are more difficult for humans. The size of each marker is proportional to the number of impressions in
the respective campaign.

Table 4 Treatment Effect vs Control Click Rate
for each model across test campaigns

Dependent variable: βk

Model ChatGPT Tuned T5

Intercept −0.987∗∗ −1.247∗∗∗

(0.421) (0.435)

αk −0.190∗∗ −0.295∗∗∗

(0.080) (0.083)

Observations 36 36

Adjusted R2 0.116 0.249

F Statistic 5.599∗∗ 12.618∗∗∗

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01

Separate regressions are estimated for the general-purpose and tuned model treatments, and stan-

dard errors are calculated by weighting each campaign by its number of impressions. Results in Table

4 confirm the negative relationship. The negative regression coefficient is robust to the inclusion of

brand fixed effects.

5.3 Content quality

Lastly, we investigate the quality of model-generated content. For each of 192 inputs, we generate

5 inputs from both ChatGPT and our tuned model. The 10 results were shuffled and eight expert

evaluators were asked to rate them as 1 or 0 based on the accuracy criteria described in Section 4.1.
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Table 5 Quality Metrics for ChatGPT and Tuned T5

Model N Accuracy BERTScore Self-BLEU

ChatGPT 960 65.6% 0.687 0.707
Tuned T5 960 71% 0.726 0.556

Accuracy scores are obtained directly from human experts.
BERTScore measures relevance of output to input (0-1),
higher is more relevant. Self-BLEU (0-1) measures diversity
of output, lower means higher diversity.

0 20 40 60 80 100 120 140 160
count

false/unverifiable

missing key information

unnatural

irrelevant

grammar/spelling

tone

repetitive

other

incomplete

Iss
ue

Issues with generated output, categorized

model
ChatGPT
Tuned T5

Fig. 6 Issues with AI-generated output

Our model performs slightly better than ChatGPT, achieving overall accuracy of 71% compared

to 65.6%.

We also calculate two automated metrics. BERTScore (Zhang et al. (2019)) measures relevance

of the output to the input on a scale of 0 to 1 and has been shown to correlate well with human

judgments of quality. Higher values mean the output is more relevant. Self-BLEU (Zhu et al.

(2018)) measures the diversity of generated output on a scale of 0 to 1. Lower values mean that

outputs are less similar to each other, i.e. higher diversity. In our setting, diversity is desirable

because it increases the chances of choosing the correct emotional tone. Eventually we expect there

will be a tradeoff between relevance and diversity; additional diversity after a point will come at

the cost of relevance. We find that our model generates more relevant (higher BERTScore) and

more diverse (lower self-BLEU) compared to ChatGPT – it attains a more efficient point on the

diversity-relevance frontier. Table 5 shows the specific numerical values.

For each output with 0 accuracy rating, we asked evaluators to categorize into a further set

of categories as shown in Figure 6, with example instances shown in Tables 6 and 7. The main
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Table 6 Example issues with ChatGPT output

Issue ChatGPT content Expert comment

false/unverifiable Input: Shop now >>> everything is extra 35%
off

“Last Chance” is unverifiable

Output: Last Chance to Save Big! Show Now
and Get Extra 35% off

false/unverifiable Input: get personalized quote | up to 15% off
or more on car insurance | just 15 minutes

“Free” is unverifiable

Output: Get Your Free Quote Today and Save
More than 15% on Car Insurance

missing key information Input: 90 day trial of Digital Advisor “trial” is missing in the input
Output: Get Ahead of the Game: Sign up for
90 Days of Digital Advisor Guidance

missing key information Input: open a CD | limited-time 13-month CD
| see offer

“limited-time 13-month” is missing
in the output

Output: Maximize your savings potential with
this exclusive CD opportunity.

Table 7 Example issues with Tuned T5 output

Issue Tuned T5 content Expert comment

unnatural Input: take an additional 40% off | last day |
free shipping | 40%

“Go on, you’ve scored:” sounds
unnatural as an intro

Output: Go on, you’ve scored: Last day to take
an additional 40% OFF + free shipping!

irrelevant Input: BOGO free on all shorts. Let those
temps rise.

“Warm yourself up!” is irrelevant

Output: You’re getting BOGO free on ALL
shorts. Warm yourself up!

grammar/spelling Input: documentary films “this” is grammatically incorrect,
should be “these”

Output: We think you’ll really like this docu-
mentary films.

repetitive Input: you’re pre-approved | offer for an addi-
tional line of credit

“You’ll love this offer” and “You’re
pre-approved for this offer!” sound
repetitive

Output: You’ll love this offer for an additional
line of credit. You’re pre-approved for this offer!

issues for ChatGPT are “false/unverifiable” and “missing key information”. This shows that our

model successfully learned to include factual information only. Conversely, the main issues with

our model are stylistic rather than semantic, the biggest being “unnatural”. This is largely due to

the limitations of a smaller language model, as T5-base has 30x fewer parameters than ChatGPT.

Even with a smaller size, our fine-tuned model outperforms ChatGPT on content quality overall.
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6 Conclusion

We developed and validated a framework that teaches language models to improve marketing deci-

sions using past A/B tests, providing a solution to the otherwise intractable problem of optimizing

unstructured content. Through a large-scale field experiment in email marketing, we established

two key findings about AI deployment in this domain: first, that small language models are suffi-

ciently powerful for improving outcomes when properly adapted to the specific task, and second,

that having humans propose initial content while AI suggests improvements provides an effective

safety mechanism. This framework enables firms to extract generalizable insights from A/B tests

while maintaining appropriate controls over AI-generated content.

Our results imply that firms should value A/B tests not just as a tool for making decisions

in the moment but also as a strategic asset for improving future decisions. In any setting where

firms conduct A/B tests to make decisions over unstructured decision variables, like the content of

advertisements or the design of a website, our framework enables firms to move beyond comparing

alternatives to optimizing the decisions directly. While we focus on text for marketing communica-

tions, the framework extends to other types of content like images and to any measurable objective.

A compelling application in the public sector is optimizing the content of nudges, such as reminders

to renew student financial aid or SNAP benefits, which can have substantial social impact.

Our framework takes experimental data as given and shows how to extract additional value from

it by generating optimized treatments. Modifying the experimental design to take these generated

treatments into account could be promising, perhaps by adapting the methods in Dew (2024) or

Ye et al. (2024).

Given our finding that AI assistance improved outcomes the most in instances where humans

performed worse, future work should investigate effective ways to combine human judgment and AI

assistance. In a radiology diagnosis setting, Agarwal et al. (2023) showed that the best combination

of humans and statistical models varies significantly with the task due to nuances in human informa-

tion processing. Similarly, in risk assessments, Green and Chen (2019) found that the presentation

format of algorithmic suggestions influences the accuracy and bias of human judgment. Extending

this research beyond binary classification tasks to more complex tasks like text generation would

provide valuable insights into enhancing decision-making processes.

In this study, our focus was on treatment heterogeneity rather than individual-level heterogene-

ity. While not directly comparable, the magnitude of improvement from modifying the treatment

is similar to that from optimizing targeting. Our optimization of a blanket treatment yielded a

33% increase in top-of-funnel engagement, while studies by Hitsch et al. (2023) and Ellickson et al.

(2023) report about an 11% gain in profit from targeting. An advantage of working with blanket

treatments is that they do not require personal data collection, a growing concern amid evolving

privacy laws. Future work could investigate whether combining our content optimization framework

with targeting yields additional gains.

On a technical level, our formulation resembles actor-critic methods in reinforcement learning,

where a policy network (in our case, a language model) generates actions and a value network (our
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predictive model) evaluates them. While we employed supervised fine-tuning to train our language

model, reinforcement learning methods like RLHF (Christiano et al. (2017)) or DPO (Rafailov

et al. (2023)) might prove more effective by directly optimizing for the desired objective, though

they are more complex to implement.

To close, the success of our empirical application positions marketing decision-making in high-

dimensional action spaces as the latest domain where inductive, data-driven methods prove to be

effective. By showing how to safely align generative AI with business objectives while preserv-

ing human agency and oversight, we provide actionable guidance for firms seeking to optimize

unstructured decisions across marketing and beyond.
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Appendix A Keyphrase extraction

We use descriptive semantic tags for subject lines, i.e. keyphrases, to steer generated content. A

keyphrase is a group of words that represents the main topic of an email campaign, such as products

being promoted (e.g. bags, Nike Air VaporMax 2021), special offers (e.g. 20% off, free shipping), or

holiday events. A good keyphrase has the following characteristics:

• Relevance: accurately describes the main topic

• Clarity: not confusing or misleading in any way

• Conciseness: short but conveys all necessary information; “new organic linen sheets” preferable

to “linen sheets”

• Specificity: detailed instead of generic, e.g. “The Great Room Event” instead of “furniture sale”

Some subject lines in our data have been tagged by humans. For untagged subject lines, we

trained a keyphrase extraction model to automate the tagging using a separate fine-tuned T5-base

model. Inputs are subject lines and outputs are human-tagged keyphrases. The training parameters

are the same as in Section 4.1.

Appendix B Emotion extraction

We use an emotional ontology with 15 categories, grouped into 5 top-level categories, as shown in

Table B1. By making the emotion of the language model’s output controllable, we can enumerate

over all the emotions, generate output for each, and automatically select the best one for the topic.

As was the case for keyphrases, some subject lines in our data have been tagged by humans.

For untagged subject lines, we fine-tuned a RoBERTa-base (Liu et al. (2019)) model using subject
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Table B1 Emotional ontology

Top category Sub-category Definition

PRIDE ACHIEVEMENT to praise or reward for an implied accomplishment
EXCLUSIVITY to imply or state one’s unique privilege in receiving

the message
LUCK to point out good fortune in having the chance to

enjoy something special

TRUST SAFETY to eliminate any worries or doubts, to make one feel
secure

GRATITUDE to express acknowledgement, appreciation, or affec-
tion in a personal way

INTIMACY to address or salute in a formal or informal way that
implies some sort of relationship

JOY EXCITEMENT to deliver positive news or introduce something
enthusiastic

FASCINATION to stimulate excitement/interest related specifically
to a new experience or possession

GRATIFICATION to stimulate excitement/interest related specifically
to value or a financial gain

ANTICIPATION ENCOURAGEMENT to motivate and/or inspire one to take an action by
explicitly prompting them to do something

CURIOSITY to nudge, intrigue or tease; to stimulate interest by
being vague

CHALLENGE to provoke a decision or an action by either daring or
asking a question

FEAR ATTENTION to alert about the importance of a certain message
and/or to provide information

URGENCY to warn about the importance of a certain message
and/or provide information

REGRET to encourage a certain action by stressing one’s
potential fear of missing out

lines as inputs and emotion tags as outputs. We add an output layer with 15 nodes on top of

the RoBERTa model and apply softmax activation to produce the probability distribution over 15

emotion classes. The loss function for fine-tuning is a categorical cross-entropy loss.

Appendix C Predictive model

Factors such as the intrinsic appeal of the product, the preferences of the recipient, or seasonality

affect the success of each campaign. To isolate the effects coming from the mechanics of language,

we normalize the data to remove overall campaign effects. We tried several model specifications

and found that BERT embeddings and linear regression performs well. Adjusting BERT’s tokenizer

to align with marketing language and terminology led to a 4% increase in overall performance.

Hyperparameter tuning was performed on a separate validation set using the Ray library. Full

results are in Table C2.
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Table C2 Root Mean Squared Error (RMSE)
metrics of regression models

Model Test RMSE

Linear regression (baseline) 0.927
T5 embeddings + Linear regression 0.924
Fasttext + CNN Multigram 0.911
Fasttext + BI-LSTM 0.917
DistilBert + custom vocabulary 0.883

Table D3 Toxicity types

Type Definition

Toxic very bad, unpleasant, or harmful
Severe toxic extremely bad and offensive
Obscene (with respect to the portrayal or description of sexual matters) offensive or disgusting

by accepted standards of morality and decency
Threat a statement of an intention to inflict pain, injury, damage, or other hostile action on

someone in retribution for something done or not done
Insult speak to or treat with disrespect or scornful abuse
Identity hate hatred, hostility, or violence towards members of a race, ethnicity, nation, religion, gen-

der, gender identity, sexual orientation, or any other designated sector of society

Appendix D Additional guardrails and post-processing

In addition to checking generated subject lines for accuracy, we apply the following steps:

1. Toxicity check

We trained a toxicity prediction model by fine-tuning the 110m parameter BERT-base-

uncased model on the public “Toxic Comment Classification Challenge” dataset from Kaggle

(cjadams et al. (2017)). The toxicity model detects the toxicity types defined in Table D3. Gen-

erated subject lines classified into any of these categories with probability more than 0.8 were

removed.

2. Diversity check

To reduce redunadancy, we compute the self-BLEU score for each subject line, where higher

values mean more similarity with the rest of the subject lines. We filter out any subject lines

with self-BLEU higher than 0.9.

3. Entity replacement

Sometimes our language model generated additional information not contained in the input.

A specific brand or product name not given in the input could be in the output. To fix this

issue, we trained an entity extraction model for detecting brand and product. At inference time,

we run this model on the output. If it detects a brand and/or product, we check whether such

phrases appear in the input. If there is a mismatch, the phrases in the output are replaced by
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the phrases in the input. The entity extraction model was trained by fine-tuning a RoBERTa-

base model on subject lines in our data which already had brand and product tags. The input

is the subject line, and the output is the tags.

4. Format correction

Some hard-coded rules were applied, like making sure the first letter of the output was

capitalized and requiring a space before and after an emoji unless it is in the beginning or end

of the output.

Appendix E ChatGPT prompt

We used ChatGPT, specifically “gpt-3.5-turbo”, which at the time of our study was the most

capable model available from OpenAI. We formulated the following prompt template and applied

it to every input:

Generate {num results} performant email marketing subject lines using

the key information delimited by triple backticks: ```{input}```

If we ask the model for 5 results for “best selling | luggage | up to 70% off | family of brands”,

OpenAI’s API returns:

1. “Up to 70% off best selling luggage from your favorite family of brands”

2. “Don’t miss out on our luggage sale: up to 70% off top sellers”

3. “Travel in style with our best selling luggage, now up to 70% off”

4. “Amazing deals on must-have luggage from our family of best selling brands”

5. “Pack your bags for less: save up to 70% on luggage from our top selling brands”
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