Causal Alignment:

Augmenting Language Models with A/B Tests

Panagiotis Angelopoulos, Persado Kevin Lee & Sanjog Misra, Chicago Booth

ESIF-AIML, August 14, 2024

(Previous title: Value Aligned Large Language Models)

Data-driven decisions

Decisions

- Product features
- Price
- Promotion content

Methods

- A/B tests
- Predictive models
- Generative models (!)

Formally

Context x, decision y, reward r(x, y):

$$y^*(x) = \arg\max_{y} r(x, y; \phi)$$

If r differentiable, gradient ascent.

If y is unstructured, guess and check?

Alternative:

- 1. Generate $y^* \sim G(y|x;\theta)$
- 2. Fine-tune θ : $\max_{\theta} \ \mathrm{E}_{y \sim G(y|x;\theta)}[r(x,y;\phi)]$

But full delegation of decision to Al can be too risky!

Framework: Fine-tune language model on A/B tests

• Idea: If A outperformed B, train language model to convert input B to output A

 For a new decision, human comes up with a candidate decision, then the language model improves.

This design reduces risk of harm compared to full delegation to an Al

Findings

1. A/B tests are a useful source of feedback for aligning language models

2. Our framework shows how to do this: "A better than B" means "turn B into A"

3. In a field experiment, we show that our framework delivers performance improvements in *new* decision contexts

Field experiment: Email marketing

Goal: show our framework works in a practical setting

- Email subject lines matter a lot! Affects click-through rate 73%-445%
- Traditionally relies on human experts to craft something catchy and relevant
- Seems like AI could add value! But things could go wrong
 - Don't want to achieve high open rates by saying false/sensational things

Framework is evaluated against 2 alternatives

- Old way: train a model to predict performance of marketing content. Human comes up with ideas, uses predictive model to sort.
- New way (?): Can we just ask ChatGPT "give me high-performing emails/ads on {topic}"?

Challenges:

- How to leverage data from past marketing campaigns?
- How to ensure factual accuracy/reasonable performance by ChatGPT?

Data

- 20,000 campaigns over 10 years from a marketing platform
- Diverse industries retail, e-commerce, fashion, financial services, and insurance – and 337 well-known brands
- Campaigns have median 800k recipients:
 - Randomly assigned to 16 subject line variants generated from a template
 - Click-through rates recorded

Fine-tuning task for language model

Input	Output
Hot rates are happening now >>> Save on your next getaway during this sale!	>>> Happening Now! You're About To Save Big During This Sale <<<

Controlling emotional valence

Input	Output
Hot rates are happening now >>> Save on your next getaway during this sale! _CURIOSITY_ _GRATIFICATION_	>>> Happening Now! You're About To Save Big During This Sale <<<

Safety considerations

Optimizing an LLM to a task creates new issues (Amodei et al. (2016)):

1. Reward hacking: can increase engagement by being inflammatory/offensive.

Solution: learn a model of acceptable output, filter generated output

2. Performance on new data: Will the LLM say something nonsensical?

Solution: instead of generating from scratch, improve on human input

Experiment: Measure effect of Al assistance

Control: human expert creates subject line as usual

Treatment 1: ChatGPT generates improvements to control subject line

Treatment 2: Our tuned language model generates improvements to control

Field experiment results: mean increase of 30%

			700	
	Click Rate (bp)		Count	
Model	mean	s.e.	Campaigns	Impressions
Control	51.69	0.127	36	31.5m

0.063

0.073

ChatGPT

Tuned T5

51.49

69.06

Mean click rates over deployed campaigns, in basis points

36

36

126m

126m

Stochastic dominance: every quantile is better

Performance of unassisted human across 36 campaigns

Assistance from our tuned model improves performance

ChatGPT doesn't improve performance

Treatment effect of AI assistance (β_k) vs control performance (α_k) across campaigns

Better accuracy at the cost of some fluency

Mechanism: Change in feature activations

Most amplified 1

- Phrases emphasizing choice and decision-making
- References to collaboration and collective effort
- References to the pronoun "you"

Most suppressed ****

- Statements related to social media interactions
- 2. Emojis representing emotions or food
- 3. Numeric values and percentages

Note: These are differences in loadings on features extracted by Gemma Scope, a pretrained sparse autoencoder.

Examples of "what to do" and "what not to do"

Most amplified

- 1. You've been selected to shop sunny-day styles for less
- 2. We're happy to announce up to 70% off select tabletop & home décor
- 3. We're treating you! You're getting up to 70% off Easter essentials

Most suppressed

- 2. Don't worry, be hoppy! **!!**There's still time to save up to 75% on Easter must-haves
- 3. Ready to redecorate? Save up to 70% on home must-haves

Note: These are actual data points that maximally activate each feature.

Discussion of results

For AI to improve performance:

- Fine-tuning is necessary
- Small language model is sufficient (T5-base is 30x smaller than gpt-3.5-turbo)

To regulate behavior of AI:

- Design task to complement human
- Filter out undesirable output
- Impose mechanism ex ante and ex post

Conclusion

Language models are useful for high-dimensional/unstructured decisions

 A/B tests are valuable beyond individual decisions; collectively are a strategic asset for improving future decisions

Lots to be done! Possible to extend predictive models to prescriptive ones

Thank you! <u>kevin.lee@chicagobooth.edu</u>

