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Abstract

Predicting demand for new products is an important and challenging problem in market-
ing, especially for product categories where brand is a key driver of choice. In these settings,
observed product attributes do not explain choice patterns well, which makes predicting sales
of a new product as a function of marketing mix variables intractable. To address this problem,
I develop a scalable framework that enriches structural demand models with large language
models (LLMs) to predict consumer preferences for new brands. After estimating preferences
for existing brands using a structuralmodel, I use an LLM to generate predictions of these brand
utilities from text descriptions of the brand and consumer. When fine-tuned on this data, I show
that the tuned LLM is able to generalize to previously unseen brands that were excluded from the
training sample. In contrast, conventional models based on text embeddings return predictions
that are essentially uncorrelated with the actual utilities, and general-purpose LLMs are also
uninformative. My fine-tuned LLM’s predictions attain a correlation of 0.52 with the held out
preferences and 17 times higher mutual information than embedding-based models; i.e. for the
first time, informative predictions can be made for consumer preferences of new brands from
text. To understand why the tuned LLM works, I modify various components of the LLM and
measure the change in prediction error. Focusing on the LLM’s ability to extract useful features
from the text and its subjective prior on the mapping from the features to the outcome, I find
that adapting both the features and the outcome mapping from the values initialized at a pre-
trained LLM improve performance. However the manner in which the parameters of the LLM
are adapted are critical, which I support with theoretical analysis. Finally, I combine causal
estimates of the price effect from instrumental variables methods with the LLM predictions to
enable pricing-related counterfactuals. By integrating the powerful generalization abilities of
LLMs with principled economic modeling, my framework enables informed decisions on opti-
mizing the marketing mix of a new product. More broadly, this approach illustrates how new
kinds of questions can be answered by using the capabilities of modern LLMs to systematically
combine the richness of qualitative data with the precision of quantitative data.

∗Email: kevin.lee@chicagobooth.edu. I thank Sanjog Misra, Eric Budish, Pradeep Chintagunta, and Gio-
vanni Compiani for helpful discussions and support. This paper benefited fromdiscussionwithMalika Kor-
ganbekova andWalter Zhang. Researcher’s own analyses calculated (or derived) based in part on data from
Market Track, LLC dba Numerator and marketing databases provided through the Numerator Datasets at
the Kilts Center for Marketing Data Center at The University of Chicago Booth School of Business. The
conclusions drawn from the Numerator data are those of the researcher and do not reflect the views of Nu-
merator. Numerator is not responsible for and had no role in analyzing or preparing the results reported
herein.
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1 Introduction

I develop a general framework for modeling brand preferences from text data by combin-

ing a structural demand model with a large language model. My motivation is the well-

known and unsolved problem of predicting demand for new brands, which is especially

difficult in product categories where brand is a major driver of choice (e.g. cars, elec-

tronics, packaged goods). In these settings, observable product attributes do not explain

choice patterns well. Brand fixed effects can capture the effects of unobservable attributes

for existing brands, but they require historical data to estimate and are not known for new

brands. As a result, demand models do not give informative predictions for new brands

or changes to existing ones.

I propose a solution to this problem that augments a structural demand model with

(i) text data,

(ii) a large language model (LLM),

(iii) and a novel method for adapting the LLM to the structural model.

Importantly, (i) or (ii) on their own fail.

My method is applicable to any demand estimation setting where unobserved prod-

uct attributes are relevant for consumer preferences and no historical data is available to

estimate the effects of unobservables. It provides relevant guidance for decisions on posi-

tioning a newbrand, brand extension (e.g. Chobani-branded oatmilk), or brand crossover

(e.g. Febreeze-scented Tide detergent). I will also show how to predict what kinds of cus-

tomers will like a new brand and solve for the profit-maximizing price.

To demonstrate and evaluate my method, I use data from the energy drinks product

category as brands have a strong effect on consumer preferences in this category. Most

of the incumbent brands like Red Bull and Monster have similar positioning around max-

imizing physical and mental performance. In recent years, however, a differently posi-

tioned brand called Celsius has been growing. It pitches itself as good for metabolism and
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health. I additionally observe that different customers tend to buy each of these brands

in my data. The customer base for traditional energy drinks is predominantly male but

much less so for Celsius, indicating a previously under-served market.

When coming up with Celsius’ entry strategy, the important questions are how to po-

sition the brand, how to set price, and which markets to enter into first. Traditional de-

mand models would answer those questions by modeling demand as a function of prod-

uct attributes, price, and consumer demographics that proxy for preference heterogeneity

(Lancaster (1966), McFadden (1974), Berry (1994), Berry et al. (1995)). For choice data

aggregated at the market level, these models look like:

Attributes of product j Demographics of market t

Utility:
{
uijt = δjt + εijt

δjt = Xjβt + ξjt

Choice: yijt = max
j

{uijt}

Demand Model

Preference Model

Consumer i in market t values product j at utility uijt and chooses the product j with

the highest utility. It is common to denote the “systematic” part of the utility by δjt. This is

the average utility for product j by consumers in market t and the main object of study in

this paper. It can be estimated from market shares and a structural model (Berry (1994),

Berry et al. (1995)). The estimated δjt’s are decomposed as a function of product charac-

teristics Xj , with preference heterogeneity modeled according to demographic variables.

The ξjt term denotes the component coming from unobserved product attributes. For

many product categories, the observed product attributesXj (e.g. size/MPG/horsepower

for cars, caffeine/calories for energy drinks) and demographics (e.g. age, gender, house-
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hold size) are inadequate for predicting δjt without the addition of a brand fixed effect

to capture the effect of unobservables. This creates an issue when estimating demand for

products from new brands as the fixed effect is unknown.

My proposal is to collect additional information with the goal of being able to predict

δjt for previously unseen brands. The premise is that text descriptions of brands and of

consumers in a market should contain useful information for predicting δjt. I show how

to incorporate this textual information in a rich way using an LLM.

My method consists of five steps:

1. Estimate δjt for existing brands and markets with standard methods.

2. Collect text descriptions of existing brands and markets.

3. Generate predictions for δjt for existing brands and markets using an LLM (e.g. ask

ChatGPT to make a guess - this might do poorly).

4. Update the LLM with the “correct” δjt’s from Step 1.

5. Use the tuned LLM to predict δjt out of sample on new brands or markets.

The important part is Step 4. I then compare my method against several natural bench-

marks: demandmodels based on observable attributes (i.e. not using text), using a general-

purpose LLM without any fine-tuning, and existing machine learning methods for quan-

tifying text based on text embeddings. On existing brands, I find that text data improves

predictions of δjt compared to not using text data (mse in split-sample). Both standard

machine learning methods using text embeddings and my method using a tuned LLM

perform well. On previously unseen brands, text data is again helpful, but my method

yields much more informative predictions than ML on the embeddings. When compar-

ing actual and predicted values of δjt, my method’s correlation is 3.7x larger and mutual

information is 17x larger.
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This raises the question ofwhy the tunedLLMworkswell. I first investigate empirically

by modifying various components of the LLM and measuring the change in prediction

error. I focus on two parts of the LLM: its ability to extract useful features from the text and

its subjective prior on the mapping from the features to the outcome (like δjt). I find that

adapting the features and the outcomemapping from the values initialized at a pre-trained

LLM improve performance, and doing both further improves performance. However, the

manner in which the parameters of the LLM are adapted are critical. Naive adaptation of

the LLM’s parameters significantly harms performance. I give a theoretical justification

for why restricting the rank of the parameter updates avoids these issues and empirically

confirm that it does.

Finally, having established my method works well for prediction, I show how to use

it for optimization. For a hypothetical new brand, I identify which markets will like it,

interpret which parts of the text drive predicted preferences, use these results to improve

brandpositioning, and solve for the optimal price. The last part combines predictions from

the tuned LLM with causal estimates of price effects from instrumental variable methods,

further illustrating how economicmethods can be enhanced by technical innovation in AI.

This paper contributes to a literature on incorporating additional data into demand es-

timation. It complements previouswork onmodeling the similarity (covariance in utility)

between existing products with extra data (Netzer et al. (2012), Compiani et al. (2024)).

Here the focus is on predicting the mean utilities of new products. It also offers an al-

ternative to extracting features from unstructured data and adding them to the observed

attributesXj . For example, additional product attributes may be imputed (Nevo (2001)),

elicited (Dotson et al. (2019), Bell and Dotson (2022)), or discovered from auxiliary tasks

(Sisodia et al. (2024)). I do not explicitly extract features but handle the raw unstructured

data directly with an LLM. This allows for highly nonlinear interactions between the im-

plicit product attributes and preference heterogeneity.

The remainder of this paper is as follows: Section 2describesmymethod inmore detail,
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and Section 3 evaluates it against several alternatives. Section 4 investigates the factors

affecting the performance of my method, first empirically and then theoretically. Section

5 illustrates how to apply my method to position a new brand, identify target markets, set

prices, and discover interpretable mechanisms driving consumer preferences. Section 6

concludes.

2 General Framework

I describe in detail each of the steps of my method, which I repeat below:

1. Estimate δjt for existing brands and markets with standard methods.

2. Collect text descriptions of existing brands and markets.

3. Generate predictions for δjt for existing brands and markets using an LLM (e.g. ask

ChatGPT to make a guess - this might do poorly).

4. Update the LLM with the “correct” δjt’s from Step 1.

5. Use the tuned LLM to predict δjt out of sample on new brands or markets.

2.1 Estimate δjt for existing brands with standard methods

I obtain choice data from Numerator in the energy drinks product category. The data

consists of shopping trip diaries (quantities and prices of items) across multiple purchase

channels (different types of stores, online and offline). My sample consists of purchases

from 2019 and contains 465,000 individuals making 3.2 million shopping trips and pur-

chasing 6.2 million items. I define markets at the zip code level to balance granularity and

sample size, and I aggregate purchases to obtain market shares for each brand.

Within the energy drink product category, suppose there are J products (I will use

product and brand interchangeably) sold in T markets. An individual i’s latent utility
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Figure 1: Arrange the estimates of δjt for existing brands and markets into a matrix. The
goal is to extrapolate and predict δjt for new brands and markets (colored regions).

for product j is uijt, and they choose the product j that maximizes this. It is common to

decompose this as

uijt = δjt + εijt,

where δjt is themean utility for product j withinmarket t, and εijt are idiosyncratic shocks.

I estimate δjt from aggregated choice data using standard methods. As a first pass, I

use a simple specification of the latent utility that makes this step straightforward (Berry

(1994)):

δ̂jt = log(sjt/s0t).

sjt is the market share for brand j in market t, and s0 is the market share of the outside

option. If a more complex model that accounted for unobserved heterogeneity using ran-

dom coefficients (e.g. Berry et al. (1995)) were used instead, the estimates of δjt from

that model would be used in the subsequent steps. All that matters is that δjt is estimated

somehow from the data.

The goal is to predict δjt for new brands and markets based on the δjt’s for existing

brands and markets. This is illustrated in Figure 1.
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2.2 Collect text descriptions of brands and markets

I gather text data that describes brands and the people that live in each zip code. It is

plausible that a text description of a brand should help capture the effects of unobserved

attributes on δjt. This text data can be collected by assembling marketing materials from

advertisements and a brand’s website then manually coding features or writing a sum-

mary. Inspired by results showing that LLM-generated information is helpful for aligning

LLMs (Wang et al. (2022), Zelikman et al. (2022)), I generate these text descriptions using

GPT-4, the latest and most powerful language model available from OpenAI. Later, I em-

pirically verify that the text descriptions contain useful information for predicting brand

preferences out-of-sample. The specific prompt used to generate brand descriptions along

with two example responses is:

System Instructions: You provide information that is relevant formarket
research.
Query: In 80words or less, describe the positioning of the {brand} energy
drink brand.
Example Response 1: Red Bull is positioned as a premium energy drink
that enhances mental and physical performance. Targeted primarily at
young adults, it’s marketed as a vital tool for energetic lifestyles, enhanc-
ing endurance, concentration, reaction speed, and mood. Famous for its
slogan “Red Bull gives you wings,” the brand heavily invests in market-
ing through extreme sports, music festivals, and youth culture events,
creating a strong, adventurous brand image that resonates globally with
those seeking excitement and a performance edge.
Example Response 2: Celsius energy drink positions itself as a healthier
beverage option aimed at active and health-conscious consumers. It dif-
ferentiates from other energy drinks by highlighting its clinically proven
formula that boosts metabolism, enhances energy, and helps burn body
fat when combined with exercise. Celsius markets its products as con-
taining no artificial preservatives or flavors, and being packed with vita-
mins and natural ingredients, appealing to those who seek a clean and
functional energy boost for their active lifestyles.

Notice the distinct positioning of the Red Bull and Celsius brands. I manually in-

spected the generated descriptions for consistency with marketing materials.
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Preference heterogeneity across markets is usually captured using demographic vari-

ables. As was done for brands, I tried generating text descriptions for zip codes. In the zip

codes I have lived in, I found the descriptions consistent with my lived experience. Text

descriptions of markets could capture more nuanced information than demographics and

are easily interpretable. To the best of my knowledge, this paper is the first instance of us-

ing text descriptions of markets in demand estimation. If these text descriptions turn out

to capture preference heterogeneity well, this would make the analysis of preference het-

erogeneity in aggregate demand models much cheaper than before, potentially replacing

expensive proprietary data. The specific prompt used to generate zip code descriptions

along with an example response is:

System Instructions: You provide information that is relevant formarket
research.
Query: In 80 words or less, describe the zip code {zip_code}. Talk about
the types of people that live there. Do not repeat the name of the zip code
in your answer.
Example Response: This suburban area is home to many families and
professionals. Residents often enjoy spacious homes, good schools, and
community amenities. The population includes a mix of young fami-
lies, established professionals, and retirees, reflecting a range of cultural
backgrounds. The area is known for its safety and family-friendly envi-
ronment, with numerous parks and recreational options.

Next, I discuss how to use this text data to predict δjt.

2.3 Generate predictions for δjt using LLM

I give the description of product j andmarket t to an LLM like ChatGPT and ask it generate

a prediction for δjt. If instructed, it will reply with a guess. These predictions may be bad

(and probably will be), which I address in the next subsection. The full prompt I use is:

System Instructions: You are a skilled analyst tasked with making fore-
casts for a market research firm, focusing on the competition between
brands and alternative products at a local level.
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Query: Given data on market shares in the energy drinks product cat-
egory at the zip code level, you have estimated the average utilities for
each brand within the market using a logit model. The market shares are
generated by taking a softmax of the utilities. The utility of the outside
option is normalized to 0.
Based on the given information, predict the utility of the described brand.
Give a numerical response only, with no explanation.
Here is a description of the zip code: {zip_code_description}
Suppose that the following brands and utilities are known:
{known_deltas}
Predict the average utility in this market for the brand with the following
description: {brand_description}
Example response: 2.84

2.4 Update LLM with the “correct” δjt’s

If the above prompt is run repeatedly on ChatGPT, it will return a distribution of re-

sponses. This is because language models are probabilistic. As depicted in Figure 2, this

distribution might be far from the “correct” value of δjt that was estimated in Section 2.1.

Denote the distribution from the LLM as Gθ(δ|xjt), where θ is the parameters of the

LLM and xjt is the input text describing product j and market t. I update the parameters

of the LLM to increase the probability mass the language model puts on the correct value

of δjt. Formally, I fine-tune the LLM to maximize the log likelihood of the δjt’s from Step

1 given the text descriptions from Step 2:

max
θ

E [logGθ(δjt|xjt)]

2.5 Use tuned LLM to predict δjt for new brands or markets

Finally, I use the tuned LLM to make predictions on new brands and markets. The as-

sumption here is that the mapping from text to δjt is the same between existing brands
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Figure 2: Repeatedly asking an LLM like ChatGPT to make a prediction will give a distri-
bution of responses (blue) that may be far from the correct value of δjt (red). Updating
the parameters of the LLM to maximize the likelihood of the correct value will move the
blue distribution to the red.

and new brands. It treats prices as endogenous and predicts utilities assuming the same

price-setting process is occurring for existing brands. If this assumption is undesirable,

the extension to integrating instrumental variables estimates of price effects in Section 5.3

offers a solution.

3 Evaluation

I evaluate how well various methods might do on new data by holding out existing data.

As shown in Table 1, I arrange δjt estimates for existing brands into a matrix and hold

out all δ’s for two “new” brands at a time to form a “test” set. I do not hold out markets

here to simplify the exposition; results on holding out markets are in Appendix B. Of the

remaining data, I use a randomly selected 80% of the values to train my predictive models

(the “training” set) and the other 20% as a “validation” set. The validation set is useful for

tuning hyperparameters and giving some sense of how the model will perform on data

it has not seen while training. Looking at predictive performance on the validation set as
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Brand 1 Brand 2 · · · Brand J-1 Brand J
Market 1 10 12 · · · 2 9
Market 2 3 16 · · · 4 7

... ... ... ... ... ...
Market T 8 3 · · · 8 12

Table 1: Data splitting for prediction into train, validation, and test sets. These are made
up numbers for δjt estimates obtained from a structural model and arranged into a ma-
trix. All of the data for two brands (marked in green) are held out to form the test set. The
remaining data, marked in gray, is split 80%-20% into a training and validation set. Pre-
dictive performance on the test set serves as a proxy for how our models would perform
in the new product introduction setting.

opposed to the training set prevents being mislead by the model simply memorizing the

data in the training set, which would perform quite poorly out of sample. The validation

set is different from the test set in that any specific δjt in the validation set will have the

brand j appear in the training set for a different t. In the test set, each brand j never appears

in the training set.

The distinction between the validation and test sets is important. An example of pre-

dicting on the validation set is predicting utility of Red Bull in Boston given utility of Red

Bull in Chicago. In contrast, the test set is like trying to predict utility for Celsius if it has

never been seen before. If helpful, test set prediction can be viewed as a kind of cold-start

problem in recommender systems. This connection is discussed further in Appendix D.

I compare the performance of my method in both the validation and test sets against

several natural alternatives:

• logit model using observed product attributes (i.e. not using text data)

• untuned LLM (asking ChatGPT to guess)

• standard machine learning methods based on text embeddings
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3.1 Background on text embeddings

Before showing the results, I give some important background on existing methods for

quantifying text and discuss intuition for why they might fail at making predictions for

previously unseen brands.

In typical practice, text is quantitatively represented via embeddings, which are vec-

tors with 500 to 3,000 dimensions (see, e.g. Devlin et al. (2018), Reimers and Gurevych

(2019), Gao et al. (2021)). Our goal is to learn a mapping from these high-dimensional

objects to a numerical quantity like utility, and critically, wewant this mapping to be capa-

ble of making good predictions on unseen text. To illustrate the difficulties with modeling

preferences from text embeddings, consider an examplewherewe have an “ideal test mar-

ket”. In this market, only 1 product is available at a time, andwe observe the proportion of

consumers that buy the product. Wemodel this choice data with a standard logit demand

model:

uij = δj + εij

=⇒ Pr(yj = 1) =
exp(δj)

1 + exp(δj)
.

Let’s try this where δj = δ(textj) is modeled as a function of the embedding of the text

description of the product. Suppose that if a product that “appeals to those who care

about quality” were available, 80% of consumers would purchase it, and if a product that

“appeals to those who care about convenience” were available, 30% of consumers would

purchase it. A logit demand model estimated on this data predicts similar choice out-

comes for products with opposite meanings, as shown in Table 2. Because this specific

variation was not in our data, our logit model was not able to learn that the change in

the embeddings from negating the meaning should lead to a change in the outcome. In-

terestingly, simply asking ChatGPT to make a guess gives more plausible predictions.

It already “understands” that negating the meaning of the brand description will likely
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Brand Description Predicted Purchase Probability
(“appeals to those who...”) Logit GPT-4

In-sample
{

care about quality 79.2% 80%
care about convenience 31.5% 30%

Out-of-sample
{

care about value 70.5% 50%
do not care about value 64.9% 20%

Table 2: Example of challenges with out-of-sample prediction with text inputs. The top
two rows are the observed data: 80% of consumers in a market will buy a product that
appeals to those who care about quality, and 30% will buy a product that appeals to those
who care about convenience. The bottom two rows describe products not in the training
sample. A logit model over text embeddings predicts similar outcomes for brands with
opposite meanings, as seen in the red numbers, because this kind of variation was not in
the training sample. In contrast, asking ChatGPT to guess leads to more plausible predic-
tions, as it “knows” that negating the meaning should change the outcome.

change the outcome. Additional details on this example, like the estimation procedure

and the prompt I used for ChatGPT, are in Appendix A.

What’s happening here is that learning themapping from a 3,000 dimension embedding

to utility is hard to do from scratch. The logit model only learns the relationship between

some of the dimensions of the text embedding and the outcome, depending on what vari-

ation is observed. Figures that visualize this intuition are in Appendix A. I formalize this

argument in Section 4.

If enough variation were observed in the data, we can imagine that a sufficiently pow-

erful model could eventually make good out-of-sample predictions. The issue is that cre-

ating a model capable of “understanding” language and performing logical reasoning re-

quires a massive amount of variation in the training data and an enormous model to learn

the correct relationships. Empirically, the requirements are about 200 billion tokens (∼150

billion words) of training data and a deep neural network of around 10 billion parameters

(Wei et al. (2022), Hoffmann et al. (2022)). My choice setting does not contain enough

data to train a model of this scale from scratch, and even if it did, costs would be pro-

hibitive. But if we initialize our model to a pre-trained LLM and then adapt it to our data,
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Figure 3: Two approaches to regression with text predictors. The top row is the tradi-
tional approach, which converts text to vectors using an embedding model then defines
a transformation (e.g. LASSO, random forest) from the embedding to the output. The
bottom row shows how an LLM can be used for regression by instructing it to generate
a prediction given the input. The parameters of the LLM are then updated based on the
data specific to the application.

our model will inherit the LLM’s desired properties.

I thus use an LLM as the functional form for the model of brand effects. This calls for

a different perspective on the prediction problem, as depicted in Figure 3. In traditional

regression models, the text inputs would be converted to embeddings, and a transforma-

tion (e.g. LASSO, random forest) would map the embeddings to the numerical output.

With an LLM, I instead give the raw text as context and instruct it to generate a prediction.

The LLM returns text as an output (e.g. the string “5” instead of the number 5), which

must then be converted back to a number. To estimate the model, I update the parameters

of a pre-trained LLM via maximum likelihood (i.e. minimizing cross-entropy loss).

3.2 Prediction results

I summarize the performance of various model families in predicting the average brand-

market utility δjt. Overall, four model families are evaluated:
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Model Validation MSE Test MSE
Attributes 2.16 4.9
Untuned LLM 4.10 4.66
Text Embedding 1.01 2.44
Tuned LLM 0.87 1.75

Table 3: Text data reduces error compared to models based on product attributes in the
validation set. The tuned LLM outperforms the embedding based methods more in the
test set, attaining a 30% reduction in mean squared error. The untuned LLM performs
poorly in both cases, indicating that fine-tuning is necessary for the LLM to be useful.

1. “Attributes”: these models predict δjt from nutritional information, which in this

case are calories and caffeine content

2. “Untuned LLM”: these predictions are from asking gpt-3.5-turbo to make a guess

given the raw text input, without any fine-tuning.

3. “Text Embedding”: these use embeddings of text descriptions of the brand andmar-

ket descriptions. I estimate L1-regularized linear regression (LASSO), random for-

est (RF), and gradient boosted decision trees (GBT). These perform similarly so in

this section I report the results from RF. Full results are reported in Appendix C.

4. “Tuned LLM”: these predictions are from fine-tuning gpt-3.5-turbo on our specific

data

Performance is evaluated on the validation set (held out brand-market combinations

containing brands that appeared somewhere in the training set) and on the test set (brands

that do not appear at all in the training set). Performance on the test set serves as a proxy

for how useful these models would be for decisions related to positioning an entirely new

product, i.e. a cold-start setting. I evaluate the differentmodels by their average prediction

errors.

Table 3 contains the mean-squared errors of the various predictors, and Figure 4 plots

these values. The untuned LLM does quite poorly in both the validation and test sets,

indicating that fine-tuning is necessary for the LLM to be useful. The product attribute
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Figure 4: Plot ofMSEs fromTable 3. Lower is better. The Tuned LLM shows improvements
especially in the test set, which contains brands excluded from training.

based model does slightly better in the validation set but equally poorly in the test set,

which makes sense because measurable product attributes are not the most informative

in this product category. Both text-based models do much better in the validation set,

reducing MSE by over 50% relative to not using text data. On the test set, this is again the

case, and the tuned LLM further reduces MSE by 30% compared to the embedding based

model.

Next, I investigate the full distribution of predicted values in the test set for the top

performing models: the embedding-based model and the tuned LLM. The findings are

stark. As shown in Figure 5, the embedding-based model’s predictions are uncorrelated

with the actual values in the test set. They are uninformative for predicting preferences

for new products, which I confirm by computing the mutual information between the

true and predicted values. The mutual information is very close to 0, which confirms the

visual appearance that the true and predicted values’ distribution are nearly statistically

independent. This means that counterfactuals on new products based on these models

should not be trusted.
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Figure 5: Text embedding-basedmodel predictions are uncorrelatedwith the actual values
in the test set. This means that new product counterfactuals based on thesemodels should
not be trusted. The tuned LLM, in contrast, attains a correlation of 0.52 and 17 times larger
mutual information, indicating that something informative has been learned bymy tuning
procedure.

In contrast, predictions from an LLM tuned with my procedure are informative in the

test set, as shown in the right panel of Figure 5. The correlation is 3.7 times higher, attaining

a value of 0.52, and the mutual information is 17 times higher. Correlations for all the

models in both validation and test sets are in Appendix C. I discussed the most relevant

ones for validating my method here.

The embedding models performing competitively with the tuned LLM on the valida-

tion set suggests that embedding-based models are good at interpolating but less good at

extrapolating. As shown in Figure 6, the predicted and actual values are highly correlated

and contain high mutual information in the validation set, while they are nearly statisti-

cally independent in the test set. For applications involving existing brands, embedding

based models may be sufficient, but they are less suitable for applications involving new

brands or changes to existing brands. Similarly, traditional demand models with brand

fixed effects and product attributes work very well in the validation set but require a judg-
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Figure 6: Embedding basedmodel performswell in the validation set but not in the test set.
Predicted and actual values are highly correlated and contain high mutual information
in the validation set, while they are nearly statistically independent in the test set. For
applications involving existing brands, embedding based models may be sufficient, but
they are less suited for applications involving new brands or changes to existing brands.

ment call in the test set for the fixed effects of new brands. If we follow Berry et al. (2004)

and do something like averaging the fixed effects of existing brands, these models do not

make good predictions on the test set, so the text-based models are more appropriate for

applications involving new brands.

I discuss preliminary results on quantifying the uncertainty of predicted δjt’s using

conformal inference in Appendix E. While average prediction error is sufficient to evalu-

ate the performance of different methods (the current focus), uncertainty quantification

would be relevant for decision-making based on individual δjt predictions (a downstream

application).
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Figure 7: In regression with text inputs, raw text is turned into numerical features then
mapped to the outcome. The feature extractor is taken as given from a pretrained model
or adapted to the data. The outcome map is learned from scratch or adapted from a pre-
trained model.

4 Factors Affecting Performance

To get some sense of why the tuned LLM works well, I evaluate how changes to specific

components affect prediction accuracy. I quantify the contributions from two parts of an

LLM: its ability to extract useful features from text, and its subjective prior on themapping

from the features to the outcome (i.e. the utility δjt). I will show that initializing the

features and the outcome map at the pretrained LLM and adapting them to the data is

important, and how its done affects performance drastically.

To fix ideas, consider the simplified diagram in Figure 7. In regression with text in-

puts, raw text is turned into numerical features then mapped to the outcome. For exam-

ple, the word count, presence of certain words, and emotional valence of input text can be

recorded, then a regression model that maps these features to the outcome variable can

be learned. The appeal of deep learning is that both steps are done simultaneously so that

useful features are learned. Recent advances in transfer learning showed that represen-

tations learned from generic tasks (i.e. embeddings) are better than learning them from

scratch (Devlin et al. (2018)). The samewas later shown for the outcomemapping (Raffel

et al. (2020)). I quantify how much of the value of incorporating a pretrained LLM is due

to each.

I consider cases where the feature extractor is taken as given from a pretrained model

or adapted to the data, and where the outcome map is learned from scratch or adapted
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Figure 8: I take the hidden state at the last layer and last token as the text embedding to
ensure differences in outcomes do not come from the quality of a different embedding
model. The outcome map is either adapted from the existing classifier head, or a regres-
sion head is learned from scratch.

from a pretrained model. I will measure the predictive performance of an LLM for all 4

combinations.

To isolate the effects of each of these factors, I use a single LLM: Mistral-7B-Instruct-

v0.1. I take the hidden state at the last layer and last token as the text embedding to ensure

differences in outcomes do not come from the quality of a different embedding model.

The outcome map is either adapted from the existing classifier head, or a regression head

is learned from scratch. This is illustrated in Figure 8.

4.1 Empirical results

I compute the MSE of the predicted δjt’s for held-out brands for 4 configurations of the

LLM, with results compiled in Table 4. All methods achieved similar performance on the

validation set, so these results measure the difference in ability to generalize to unseen

brands rather than differences in model expressivity. Learning the outcome map from

scratch on frozen embeddings (top left of Table 4) performs the worst on held-out brands.
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Table 4: MSE on held-out brands (test set) for various configurations of an LLM. Adapt-
ing the embedding and the LLM’s prior on the outcome map are each helpful, and the
combination is even more so. The way in which the embeddings are adapted affects per-
formance drastically, which is explained in the subsequent section.

To improve set test performance, I investigate whether inheriting more information from

the pretrained language model is helpful. Initialize the head of the language model to the

pretrained values and fine-tuning just the head helps slightly (top right of Table 4). Next,

I evaluate whether adapting the representations helps. I allow all intermediate layers of

the language model to adapt to the training data, which updates the representations. This

helps performance further (bottom row of 4), with a positive complementarity between

adapting the representations and adapting a pretrained outcome map. That is, adapting

the embedding and the LLM’s prior on the outcome map are each helpful, and the com-

bination is even more so.

However, how the embeddings are adapted affects the prediction quality dramatically.

Naive adaptation of the embeddings doesn’t work, as shown in Table 5, which I will ex-

plain next theoretically.

Table 5: Naive adaptation of the embeddings (middle row) harms performance.
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Figure 9: Text regression toy model: δ = β⊤Et. The embedding matrix E can be frozen
or adapted, the outcome map (regression coefficients) β can be learned from scratch or
adapted.

4.2 Theoretical analysis

I now explain theoretically why naive adaptation of the embeddings harms predictive

performance and why the alternative I used should fare better. The theory uses a toy

model, as shown in Figure 9, that represents the functional form for predicting δ with a

two-layer linear model:

δ = β⊤Et.

t is the raw text input, which is converted into a embedding vector with a matrix E, and

mapped to the outcome with regression coefficients β. E can either be frozen (taken as

given) or adapted to the data, and β can be learned from scratch or adapted to the data.

My main point is an implication of a theorem in Du et al. (2018), which states that the

quantity ββ⊤ − EE⊤ is preserved under gradient descent on the parameters (β,E). That

is, changes to β under gradient descent must mechanically lead to changes in E. Suppose

the parameters are initialized at (β0, E0) and that there exist optimal values (β∗, E∗). The

theorem implies that if β0 is far from β∗, which occurs when the outcome map is learned

from scratch, updating β will distort E. This is undesirable if E0 is already close to some-

thing good. I address this issue with two interventions: a better initialization of β0 (from

the pretrained language model), and restricting the changes to the E matrix. Freezing E

might be too restrictive, but allowing limited changes toE might be able to strike the right

balance.
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I now explain how the updates to E are restricted. Fine-tuning updates the initial em-

bedding matrix from E0 to E := E0 +∆E. The claim is that the embeddings are distorted

less when the rank of the ∆E matrix is restricted.

This can be shown with linear algebra. The change in the embedding for text t after

fine-tuning is ∥(E0 +∆E)t− E0t∥ = ∥∆E t∥. By a singular value decomposition,

∥∆E t∥ = ∥UΣV ⊤t∥ =

√√√√ r∑
i=1

σ2
i (v

⊤
i t)

2,

where r is the rank of ∆E and σi are the singular values of ∆E. Over different inputs t,

the expected value of the change in embeddings will be proportional to
√∑r

i=1 σ
2
i , which

is increasing in r. Thus restricting the rank of ∆E will restrict the magnitude of ∥∆Et∥.

In practice, I restrict the rank of ∆E by expressing it as the product of two low-rank

matrices. Suppose ∆E is a d1 × d2 matrix. Typical values of the dimensions d1 and d2 in

LLMs are 4,000-12,000. Instead of learning the full d1 × d2 matrix ∆E, I factor it as:

∆E = α × B

A

d1

d2

d1

r

r

d2

B is a d1× r matrix, A is a r×d2 matrix, and α is a hyperparameter that determines the

overall magnitude of the change in the parameter E. r is a hyperparameter that controls

the rank of the update and is chosen to be a value r ≪ min(d1, d2). Only B and A contain

trainable parameters, andHu et al. (2021) showed that even very small values of r (e.g. 4)

performed competitively with full fine-tuning on validation-set type tasks. Given typical

values of d1 and d2 around 4,000 to 12,000, this means cost-effective fine-tuning is possible

with just 0.1% of the parameters. Visual intuition for the reduction in parameters can be
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Figure 10: LoRA changes the embeddings less than full fine-tuning. For each point, I
compute the distance of the embedding after fine-tuning to the original embedding (x-
axis) and the distance of LoRA embedding vs the original embedding (y-axis). All points
lie below the 45-degree line, and in fact lie below the horizontal line of 0.58, indicating that
LoRA bounds the extent to which embeddings change.

obtained from the picture above – there are much fewer numbers in the “skinny” matrices

B and A than in the full matrix ∆E.

Heremy result is that low-rank adaptation (LoRA) helps improve test set performance.

Imposing the low-rank structure on how the embeddings adapt improved performance in

Table 4, and I empirically confirm that it also restricts the change in embeddings, as shown

in Figure 10.

5 Application

Having shown my method is good at prediction of brand preferences, I now show how to

use it for optimization. Consider a hypothetical entrant that is positioned distinctly from

incumbent brands. I describe this brand as follows:

ZenBoost is an energy drink positioned as a natural, calming alterna-
tive to traditional high-caffeine options. Focused on mental clarity and
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stress reduction, ZenBoost features a unique blend of adaptogens, CBD,
and moderate caffeine from green tea. Its branding emphasizes a holis-
tic approach to energy, targeting professionals and students seeking sus-
tainable focus without jitters. The packaging is eco-friendly, reflecting
its commitment to sustainability andwellness, appealing to environmen-
tally conscious consumers looking for a healthful boost in their daily rou-
tine.

For this hypothetical new brand, I show how to predict which markets will like this

product the most, interpret which parts of the text description are driving preferences,

use this to optimize brand positioning, and calculate the optimal prices in each market.

Lastly, I show how to calculate perceptual maps (“brand maps”) from my model. These

maps visualize the nature of the competition between the entrant and incumbents.

5.1 Identifying target markets

I summarize the spatial distribution of preferences with a geographical heatmap of the

predicted utilities. Figure 11, which consists of a heatmap of the predicted utilities at the

3-digit zip code level. It looks like consumers in the West and Southwest will find this

product most appealing, and consumers in the South will find it least appealing. Thus

markets in the West and Southwest may be the best markets to launch in first. Also, while

Numerator only has sufficient data for computing market shares in 3,000 zip codes, I am

able to make predictions for the utilities in all 32,582 zip codes in the contiguous U.S. be-

cause mymodel takes a text description of the market as input and I showed it generalizes

well to new markets.

This ability to generalize to new markets is practically useful. My model is able to ex-

trapolate fromhigh-quality datawith incomplete coverage, so a smaller amount of densely

collected data may be sufficient for market research applications. Another application is

to introducing an existing product to new markets, e.g. for international expansion. If

there is a popular product in one country, and a distributor is interested in rolling it out

to a new market, consumer preferences for this product in new markets can be predicted
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Figure 11: Predicted values of the average brand utility for the hypothetical entrant, Zen-
Boost, visualized in a heatmap at the 3-digit zip code level. At a quick glance, the West
and Southwest appear promising, and the South less promising. This figure gives some
intuition for which geographical markets might be suitable to enter in first.

based on text descriptions of the market.

5.2 Positioning

I investigate which parts of the text description affect the predicted utility. A benefit of

generating predictions from an LLM is the ability to discover interpretable mechanisms.

Similar to neuroscience imaging studies, we can investigate howpatterns of neural activity

within an LLM mediate the relationship between the input stimulus, e.g. the text descrip-

tion of a brand, and some outcome, e.g. the predicted utility δjt. Unlike in neuroscience,

it is feasible to modify the activations of the neurons and observe the changes in outcome,

which provides stronger mechanistic evidence than correlations alone. Suppose we iden-

tified neurons that fire when input text has a certain emotional valence and wanted to

conclude that emotional valence mediates outcomes. We can suppress or amplify those

neurons and test whether the outcome changes as predicted.
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Figure 12: Ablating the residual stream at each layer of a fine-tuned LLM at each token
in the brand description, which has been shortened to fit on the page. The color is the
resulting change in the predicted δjt. Layer 21 of the LLM matters a lot.

I conduct this exercise with the ZenBoost brand description. I fine-tuned an open-

source LLM (Gemma-2-2B fromDeepMind), set the residual stream activation to 0 at each

layer of the LLM for each token in the text description and measured the resulting change

in δjt. As shown in Figures 12 and 13, some words matter, and layer 21 of the LLMmatters

a lot. Since embeddings are obtained from the activations of the last layer of an LLM,

this analysis would not have been possible with an embedding-based model. These kinds

of figures should be useful for exploratory analyses that seek to identify factors within

the brand or customer description that drive preferences. This can inform decisions on

repositioning the brand as a whole or identifying the kinds of customers that the brand

should be targeted toward.

Deactivating an entire layer of the LLM is a very coarse operation, so I now investigate

layer 21 in finer detail. Unfortunately, the individual neurons of the LLM are difficult

to interpret: for a given type of input text, many neurons fire, and a given neuron will
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Figure 13: Ablating the residual stream at each layer of a fine-tuned LLM at each token in
a market description. The color is the resulting change in the predicted δjt. Layer 21 of
the LLM and the words “suburb” and “student” matter a lot.

fire for many types of input text (Bricken et al. (2023)). However, the neuron activations

can be mapped into an interpretable space using a sparse autoencoder. The autoencoder

performs a version of factor analysis where the number of factors is larger than the number

of dimensions. Imposing a sparsity penalty on the factor loadings leads to the learned

factors, hereafter referred to as “features”, being interpretable – the factors only load on

very specific kinds of input text (Cunningham et al. (2023)). Additionally, changing the

loadings on features changes the generated text in the expected ways (Templeton et al.

(2024)).

Formally, let h be intermediate values of LLM at a layer. h is not interpretable, so we

project it into a “feature space”:

ĥ =
K∑
k=1

ck(h) fk

The result fromCunninghamet al. (2023) is that imposing sparsity on the coefficients ck(h)

leads to interpretable features fk. Or inmath: min
f,c(·)

∥h−ĥ∥22+λ∥c(h)∥1 leads to interpretable
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Figure 14: Attaching a sparse autoencoder (SAE) to an LLM enables interpretation of
intermediate values. The SAE must be separately trained beforehand to learn the features
and name them.

fk. This sparse autoencoder must be trained ahead of time (i.e. it is pretrained). While

doing this, the learned features can also be named by using another LLM to summarize

the kinds of text that activate it.

I compute the feature activations of the brand description by attaching a pretrained

sparse autoencoder (Lieberum et al. (2024)) to the internal activations of my LLM, as il-

lustrated in Figure 14. These activations are plotted in Figure 15. 92.5% of the features

have zero activation, and the top activating feature is “phrases related to nutritional sup-

plements and their effects”.

The feature activations only describe the input text. To assess the impact of the features

on the predicted utility, I set the activation of each feature to 0 andmeasure the effect on the

output. This requires several steps: I attach the autoencoder to the LLM, apply the encoder

to the LLM’s activations, set the coefficient on one of the features to 0, run the decoder on

the modified values, then replace the LLM’s activations by the reconstructed activations

from the decoder. The change in the value of the δjt can be viewed as the predicted causal

effect of ablating the feature. Discovered features with large effects on the outcome are:

“phrases related to health and wellness”, “references to plants and plant-based topics”,

and “terms related to medical or scientific findings”.
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Figure 15: These feature activations of the ZenBoost brand description are computed by
attaching a sparse autoencoder to the internal activations of my LLM. 92.5% of the fea-
tures have zero activation, and the top activating feature is “phrases related to nutritional
supplements and their effects”.

Figure 16: Amplification of features with an SAE. The intermediate values of an LLM are
projected into the interpretable feature space, modified as desired, then reconstructed.
The reconstructed values replace the original values, and the new output is computed.
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Given estimates ofwhich featuresmatter, we can complete the feedback loop and apply

it to modifying the description of the brand. This is done similarly as in the previous part,

but instead of setting the activation of a feature to 0, its value is increased. I illustrate

this procedure in Figure 16. This method offers an interpretable way of optimizing brand

positioning. It is also a natural point for an analyst to intervene and impose their domain

knowledge. If this analysis reveals that the LLM is loading on spurious or undesirable

features, the entire LLM fine-tuning loop can be re-run with the constraint that certain

features do not activate. In Table 6, I show some results from boosting the “plant-based”

and “health/wellness” features deemed to be important in the previous step. Amplifying

the feature too much degrades the fluency and relevance of the generated text, but this is

due to the relatively small 2 billion parameter being used here. This is less of an issue with

larger models, and results will be updated once those analyses are complete.

A similar analysis can be performed by applying the sparse autoencoder to the market

description, with the goal of identifying customer types with high match values with the

brand. Overall, this section illustrates the additional interpretation and control that LLM’s

make possible beyond embedding-based models.

5.3 Pricing

Counterfactuals involving changing the price of a product require causal estimates of the

price effect. In structural models, the standard procedure to do this is to decompose the

estimated mean utilities δjt based on a brand-specific intercept aj and the price pjt:

δjt = aj − αpjt + ξjt. (1)

The problem here is that running this regression will often lead to the erroneous con-

clusion that higher prices lead to higher utilities. There are unobservables in ξjt that are

correlated with the price, e.g. unmeasured “quality” where higher quality is correlated
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Feature Steering strength Generated text
Original ZenBoost offers a natural, calming energy boost

with adaptogens, CBD, and green tea, targeting eco-
conscious professionals seeking focus without jitters.

Plant-based Low ZenBoost is a plant-based, energy drink that provides
a natural, calming energy boost without the jitters

Medium I’m a plant-based, non-GMO, caffeine-free, and CBD-
based energy drink with no crash and no jitters. I’m
the new way to get your life back on track.

High Life is busy. But it has to be. That’s life. And with life
comes stress.

Health Low The ZenBoost brand is a natural and effective energy
drink that is designed to provide a boost of energy
while also promoting relaxation.

Medium Our brand is about providing a more natural, more ef-
fective, and more sustainable alternative to the tradi-
tional energy drink.

High ZenBoost is a natural, non-stimulant, and non-
dehydrating, and non-negative impact on the environ-
ment

Table 6: Modifying the brand description by boosting interpretable features in an LLM.
If data reveals that a certain feature is desirable, this offers a way to operationalize that
information. If themagnitude of the intervention is too large, it starts to distort the output,
but this is less of an issue with larger language models. Alternatively, these features could
be boosted by simply instructing the LLM to rewrite the text with emphasis on the feature.
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with higher price, which leads to biased estimates of the price coefficient. The solution is

to instrument for the price. There is a long and active literature on the best way of doing

so, but I use the commonly used instruments of Hausman (1994) as it is straightforward.

This gives a corrected estimate for α. Alternative instruments could be used here; all that

matters is α is estimated somehow.

Once a is estimated, define the quantity ϕjt that contains the non-price parts of δjt:

ϕjt := δjt + αpjt. (2)

I compute this using α obtained from instrumental variables methods and pjt from the

observed price. I call ϕjt the “gross” utility, as it removes price from the “net” utility δjt.

I then train an auxiliary model to predict ϕjt from text descriptions of the brand and

market. For pricing counterfactuals of a new product, one can generate the prediction for

ϕjt from a text description, choose a price p and add αp to get the predictedmean utility δjt

at that price, from which predicted quantities can be calculated. By multiplying the price

(net of an assumed marginal cost) by the predicted quantity, we now have counterfactual

predictions of the profit and can solve for the profit-maximizing price. In fact, this is suffi-

cient information to solve for the new optimal prices for all of the products, which allows

for more realistic predictions of supply-side conduct as shown in Allenby et al. (2014).

Any other endogenous product characteristics that we know how to instrument for can

be handled in a similar way. Thus estimates from causal inference, based on instruments

derived from economic reasoning, can be combined with the predictive abilities of LLMs.

I estimate the price coefficient α by regressing δjt on price and brand fixed effects, with

results in Table 7. I report results from OLS and from instrumenting the price with Haus-

man instruments (average prices in other markets). The IV estimates are obtained via

GMM, as two-stage least squares is less efficient with the instruments I use. The OLS esti-

mate is less negative than the IV estimate, which is consistent with bias from confounders.
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OLS IV-GMM
δjt δjt

Intercept −5.103 −4.450
(0.035) (0.099)

Price −0.0224 −0.269
(0.006) (0.035)

Fixed Effects Yes Yes
Observations 22705 22705
R-squared 0.601 —

Table 7: Price coefficients obtained by regressing the net utility δjt on brand dummies and
price. Since price is endogenous, I instrument for it using Hausman instruments. The IV
estimate is 12xmore negative than the OLS estimate, indicating that endogeneity is indeed
a concern. The estimated price coefficient is used later for pricing counterfactuals.

This bias is quite severe, as the IV price coefficient is 12 times the magnitude of the OLS

coefficient. Still, the instruments I use are likely not perfect - the coefficients are less nega-

tive thanwhat I would expect from other papers using scanner data. This can be remedied

with better instruments. Berry et al. (1995) and Nevo (2001) discuss and compare many

such options. With this estimate in hand, I construct the “gross” utilities ϕjt := δjt + αpjt,

where α is the negated coefficient on price.

The results for predicting “gross” utilities ϕjt are similar to that for prediction δjt. LLM-

generated predictions again significantly outperform embedding-based approaches for

brands that were entirely held out of the training sample. I move these results to the

appendix to simplify exposition.

I solve for the profit-maximizing price of the entrant using the estimated demand sys-

tem. The market share for product j in market t implied by my demand model is

sjt =
exp(δjt(p))

1 +
∑

j′ exp(δj′t)
. (3)
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Additionally, the utility for product j in market t at price p is

δjt(p) = ϕjt − αp, (4)

Profit at price p is proportional to (p− c)sjt, where c is an assumedmarginal cost. The first

order condition of the profit after differentiating with respect to p is

π′(p) = p− c− 1

α(1− sjt)

= p− c− 1

α

(
1− exp(ϕjt − αp)

1 +
∑

j′ exp(δj′t)

)−1

(5)

The second line comes from substituting Equations (3) and (4) into the first line. Notice

that the price p appears twice: in the first term and in the last term.

To solve for the profit-maximizing price, I predict the utility ϕjt for the entrant from

text descriptions of the product and the market. The values of δj′t for the incumbents

are known from estimating the structural demand model, though if we are interested in

a new market, these can be predicted as well. I plug in the value of the instrumental

variables estimate of the price coefficient, assume a value for the marginal cost, and solve

for the value of price p that makes the right hand side of Equation (5) equal to 0. Here,

my estimate of the price coefficient was 0.27, and I chose to set the marginal cost to $0.30.

I check the sensitivity of the results to cost assumptions afterwards.

I predict the utility ϕjt for the hypothetical ZenBoost product in each market and solve

for the corresponding optimal price. Figure 17 plots the relationship between price and ϕjt

acrossmarkets. The relationship ismonotonic, and the vertical variation (variance in price

for the same value of ϕjt) comes from the different competitive conditions in each mar-

ket. The horizontal variation comes from variation in preferences. I also plot the spatial

distribution of optimal prices in Figure 18.

The optimal prices are higher than would be intuitively predicted due to an inelas-

36



−4 −3 −2
φjt value of entrant in market t

4.0

4.5

5.0

5.5

6.0

O
pt

im
al

P
ri

ce

Optimal price of entrant across markets

Figure 17: This figure shows the relationship between the predicted utility ϕjt for the hypo-
thetical ZenBoost entrant and the optimal price. Each point is a zip code. The relationship
is monotonic, and the vertical variation (variance in price for the same value of ϕjt) comes
from the different competitive conditions in each market, i.e. differing values of the in-
cumbent utilities δj′t arising from differences in prices and preferences.

tic estimate of the price elasticity and simplifying supply-side conduct assumptions. My

instrumented price coefficient is less inelastic than is implied by running OLS without in-

struments, but it is still too inelastic. Because my estimate predicts that consumers will

not punish a price increase too much, the implied optimal price is higher. This can be

fixed with better instruments for the price and there are plenty of examples in the litera-

ture on suggestions for such instruments (e.g. Berry et al. (1995), Nevo (2001)). Another

reason the optimal prices are high is that I assume there is no competitive response by the

incumbents. While this is common practice, it is not fully realistic as it describes a partial

equilibrium where incumbents do not adjust prices in response to an entrant. Thus the

downward price pressure from Bertrand competition is absent. Computing the full equi-

librium is a more involved process and is under way. Allenby et al. (2014) shows how

solving for the full equilibrium materially affects post-merger outcomes, and I expect that
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Figure 18: Spatial distribution of optimal prices for a hypothetical entrant, averaged at
the 3-digit zip code level. These prices were calculated from predictions of the utility for
the product and demand parameters. The optimal prices are quite uniform, with a few
spikes in the Southwest region. Note that these prices are higher than intuitively predicted
due to an inelastic estimate of the price elasticity and simplifying conduct assumptions.
The white regions are where Numerator does not have sufficient coverage to compute
incumbent utilities, though these can be imputed with my predictive model as well.

the same should hold for post-entry outcomes.

5.4 Brand Map

To succinctly summarize how this brand competes with existing brands, I obtain predic-

tions of the net utility δjt for this brand across all markets and compare it against the δ’s for

the incumbent brands. I create a visual representation similar to the spatial mapping lit-

erature (Elrod (1988), Chintagunta (1994)). Representing each brand by its full vector of

utilities δjt across markets, I apply a dimensionality reduction technique, t-SNE (Van der

Maaten and Hinton (2008)), on this vector, as shown in Figure 19. Intuitively, it makes

sense that the new brand is closer to Celsius than most of the other brands.
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Figure 19: Applying a dimensionality reduction technique, t-SNE (Van der Maaten and
Hinton (2008)), to the vector of brand utilities across markets gives a visual depiction of
brand similarity. The position of the hypothetical new brand is marked in orange, and it
intuitively makes sense that it would be closer to Celsius than most of the other brands.

6 Conclusion

I developed a scalable method for modeling brand preferences from text that generalizes

to unseen brands andmarkets. The keys to the success of mymethodwere initializing and

then adapting text feature extractors and subjective priors from a pretrained LLM. More-

over, imposing a low-rank structure on the updates to the LLM’s parameter was critical

for my method to work.

My method gives a framework for predicting demand for new products as a function

of marketing mix variables like product position, price, and place, which I demonstrated

through a series of counterfactuals. With these predictions, it becomes possible to opti-

mize these marketing mix variables. While I focused on predicting preferences for new

brands, the framework is more general and can enhance any demand model where brand

fixed effects play a prominent role. Additionally, compared to existing approaches of mea-
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suring brand preferences that require additional psychometric data, mymethod is cheaper

andmore accessible. LLM-generated text descriptions contain enough useful information

for modeling preferences, and low-rank adaptation reduces the costs of fine-tuning.

Substantively, this paper shows that informative counterfactual predictions related to

positioning and pricing a new product are feasible from raw text descriptions of a brand,

which is new in the literature. This was accomplished by combining data on consumers’

choices with text data on brands within a framework that integrated structural models

and LLMs. Whereas traditional text embedding-based models were unable to make in-

formative predictions, carefully tuning LLMs on results from an economic model proved

successful at harnessing their abilities for our specific problem.

Practically, this frameworkmakes questions thatwere previously unanswerable tractable.

For example, an energy drink entrant like Celsius can optimize its positioning, identify

what kinds of markets would be the best match, and solve for profit-maximizing prices.

An incumbent brand like Red Bull can explore how to optimally reposition, e.g. if it wants

to change how it positions its brand, with this framework.

The framework can also be used to operationalize hypotheses from the behavioral lit-

erature. If lab studies showed that the emotional valence of brand positioning moderates

brandpreferences, LLMsteering techniques (e.g. Keskar et al. (2019)) can be used tomod-

ulate the emotional valence of generated branddescriptions and test the effects of doing so.

Additionally, my framework offers a complementary setting to the lab for studying how

brands affect consumer perceptions (e.g. Simonin and Ruth (1998)). Given a description

of a customer, my framework can be used to check whether varying the description of a

brand in a specific way leads to the directional changes in utility we would expect from a

lab study, and it can quantify the monetary value of such changes in perceptions.

Beyond the immediate practical applications, this framework is useful for answering

policy questions. One example is that it makes a much more expressive version of merger

simulations possible. One reason for the poor predictive performance of merger simula-
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tion models is that they do not account for how product characteristics will change after a

merger (Peters (2006)). It should be feasible to obtain expert opinions on how firms will

change their product positioning from analyst reports or interviews of executives. Then

an LLM can be take pre-merger product positions and these reports as input and generate

a prediction for post-merger product positioning, which is sufficient information for the

framework to model the new demand system.

More broadly, this paper shows how generative models enable the integration of un-

structured data into choice models. It would be interesting to extend these ideas to other

forms of unstructured data, such as images of advertisements or open-ended responses

to interview questions asking about consumers’ needs. For the latter, rich inferences of

how products fulfill these needs can be calculated from choice data. Future work on these

applications is underway.
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A Details of example showing limitations of embeddings

Here are additional details of the example in the introduction on limitations of work-

ing with text embeddings. The purpose of this example is to have a minimally complex

demonstration of issues with learning to generalize from text inputs.

The embedding model is OpenAI’s text-embedding-3-small, their latest and best per-

forming text embedding model. For the logit model, the product utility is modeled as the

dot product of a learned user vector and the text embedding of the product description:

δ(textj) = Xjβ.

The implied choice probabilities are exp(Xjβ)/(1 + exp(Xjβ)). Given data simulated for

100,000 consumers, β is estimated via maximum likelihood with elastic net regularization

(penalty .001, equally split between L1 and L2).

ChatGPT predictions are obtained by putting the known data into the prompt:

System Instructions: You are a skilled analyst tasked with making mar-
ket share forecasts for amarket research firm, focusing on the competition
between brands and alternative products.
Query: Consider a scenario where there is only 1 market that has 1 prod-
uct available at a time. Suppose that if a product that “appeals to those
who care about quality” were available, 80% of consumers would pur-
chase it, and if a product that “appeals to those who care about conve-
nience” were available, 30% of consumers would purchase it. What per-
cent of customers in the market do you estimate will buy if the available
brand “{new_brand}”? Give a numerical response only, with no expla-
nation
Example Response: 20%

46



0 4 8 12 16 20 24 28

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46

"quality" vs. "convenience"

0 4 8 12 16 20 24 28

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46

"quality" vs. "not quality"

0 4 8 12 16 20 24 28

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46

"quality" vs. "value"

0.0

0.5

1.0

1.5

2.0

Figure 20: A heatmap of the loadings on the 1536-dimensional embedding of a brand
description if only two products are observed in the training data. For visualization pur-
poses, the 1536-dimensional vector has been reshaped into a 48 by 32 array, and the color
of each entry is the magnitude of the coefficient from the logit model. Note that different
dimensions of the embeddingmatter depending onwhat is observed. This figure provides
intuition for why linear models over embeddings will struggle to make good predictions
out of sample.

Additionally, we can visualize what dimensions of the embedding the logit model

loads on depending on the variation that is observed. The plots in Figure 20 are obtained

by plotting the estimated coefficients from the logit model. The hypothetical data is gen-

erated from various brand positions, and the learned vectors are plotted to show how the

model is picking up on different dimensions of the text embedding.

B New Market Counterfactuals

In the main body of this paper, I focused on counterfactuals related to introducing a new

product. Onemight also be interested in predictingwhatwill happen in a newmarket, e.g.

as could happen from regional or international expansion of an entire product category.

This case turns out to be less interesting so is in the appendix to simplify the presentation
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Brand
Existing New

Zip Code Existing 1 3
New 2 4

Table 8: Both brands andmarkets are split into training and holdout sets, which partitions
the data into 4 subsets. 80% of the data in quadrant 1 is used for estimating a model,
and the remaining 20% are used to tune hyperparameters. Quadrants 2, 3, and 4 are only
evaluated at the end and are proxies for the cold-start scenarios we care about.

MAE in market share (pp), by model
Group RF GBT GPT-3.5-turbo GPT-3.5-tuned
0 (train) 1.4 0.9 5.8 1.8
1 (validation) 2 2.1 5.8 1.9
2 (new market) 1.9 2 5.7 1.8
3 (new brand) 4.1 7 6.1 2.4
4 (new market+brand) 4.3 7 6.3 2.5

Table 9: Predictive performance of various model families by subset of data. Group 0 is
the 80% of quadrant 1 in Table 8 that was used for training. Random forest and gradient
boosted trees are competitive for “warm-start” prediction (group 1) and even for predic-
tions for existing brands in newmarkets (group 2), but they struggle in cold-start settings
involving new brands (groups 3 and 4). The tuned LLM does much better in these latter
cold-start settings.

in the main body.

For this exercise, I split both zip codes and brands into training and holdout sets. This

partitions the data into 4 subsets, as depicted in Table 8. I train the regression model on

80% of the data in quadrant 1, and use the remaining 20% of the data to tune hyperpa-

rameters. Quadrants 2, 3, and 4 are never seen by the model during training. Predictive

performance on these subsets of data are evaluated at the end after all hyperparameter

tuning steps. These are proxies for how the model would perform in the cold-start sce-

narios we care about. In particular, the new market counterfactuals are quadrants 2 and

4.

For the predictive models of utility, I evaluate various model families by their ability

to predict market shares. Comparing the mean absolute error in market share percentage
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points in Table 9, I find that random forest and gradient boosted trees are competitive for

“warm-start” prediction (existing brands and markets that were held out from training)

and even for existing brands in new markets (group 2). However, they struggle in cold-

start settings involving new brands (groups 3 and 4 in the table). The tuned LLM does

much better in these latter cold-start settings.

The untuned model does not do great at warm-start or cold-start settings, indicating

that domain-specific data is necessary for the LLM to be useful. Notably however, the

untuned LLM does outperform highly optimized gradient boosted trees at cold start pre-

diction. This may be because the prompt I used here was focused on market shares rather

than the utilities. Market shares are concrete, so it is plausible that the general-purpose

LLM could do a decent job at predicting them versus asking it to guess a utility. This

surprising result was the inspiration for trying to tune an LLM to generate predictions in

the first place. In the main body, I switched prompts to instructing the LLM to predict

utility rather than proportional market shares because this prompt improved more when

fine-tuned.

For completeness, the prompt used for the LLMs in this section is:

System Instructions: You are a skilled analyst tasked with making mar-
ket share forecasts for amarket research firm, focusing on the competition
between brands and alternative products at a local level.
Query: Based on the given descriptions, predict the ratio of market
shares between the described brand in the energy drinks category and
the outside option of buying a sports drink. The market shares are com-
puted at the zip code level. Provide your prediction as a decimal ratio.
For instance, if the market share of a brand is 0.2 and the outside option’s
is 0.4, the correct response is 0.5. Give a numerical response only, with
no explanation.
Zip code description: {zip_code_description}

Brand description: {brand_description}

Example Response: 0.65
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C Results for all models

Here I include metrics for all the predictive models on both validation and test sets. See

Tables 10, 11 and Figure 21. The first 3models (LASSO, RF, andGBT) aremodels based on

text embeddings, and the latter 3models are based on LLMs. I test both a general-purpose

LLMwithout any fine-tuning and two version of fine-tuned LLMs. The embedding-based

methods perform competitively in the validation set, on brands that they have seen in other

markets, but significantly worse in the test set, on brands that were completely withheld

from training. For the LLM to perform well on test set brands, fine-tuning is necessary.

Model Validation MSE Test MSE
LASSO 1.29 2.47
RF 1.01 2.44
GBT 1.00 2.49
gpt-3.5-turbo 4.11 4.67
gpt-3.5-tuned 1.03 1.94
2 stage gpt-3.5-tuned 0.87 1.75

Table 10: MSE of predicted δjt values. Lower is better. Performance between traditional
regression models (first 3 rows) and generating predictions from a tuned LLM (last 2
rows) are comparable in the validation set, but noticeably different in the test set. This is
due to LLMs’ ability to extrapolate to data it has not seen in the training set.

Model Validation Corr. Test Corr.
LASSO 0.72 0.14
RF 0.79 0.14
GBT 0.79 0.10
gpt-3.5-turbo 0.10 -0.05
gpt-3.5-tuned 0.79 0.47
2 stage gpt-3.5-tuned 0.82 0.52

Table 11: Correlation between true and predicted delta. Higher is better. Notice especially
how the first 3 models are uninformative on the test set.
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Figure 21: Plot of correlations in Table 11. Higher is better. On the test set, only the tuned
LLMs provide useful predictions.

D Connection to recommender systems cold-start

The problem of estimating preferences for new brands has some similarities with the cold-

start problem from recommender systems. Depending on the background of the reader,

the cold-start problemmay providemore relevant intuition for conceptualizing this paper.

The problem of recommending movies to users based on their past ratings was made

famous in the Netflix Prize (Bennett and Lanning (2007)). Given partially observed data

of users and movie ratings as shown in Table 12, high-performing methods were devel-

oped for predicting how a user would rate an existing movie based on their past rat-

ings and ratings from similar users (Resnick et al. (1994), Su and Khoshgoftaar (2009)).

But recommending new movies to existing users, existing movies to new users, and new

movies to new users remains difficult. As in products with strong brand effects, easily

measured attributes (e.g. genre, length, budget) do not adequately represent people’s

preferences over movies, which makes these “cold-start” problems hard compared to the
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case where data can “warm-start” preference estimation. Recently, however, there has

been significant progress in incorporating unstructured text data to solve the cold-start

problem (Li et al. (2023), He et al. (2023)). This progress motivated the present work.

Movie 1 Movie 2 Movie 3 Movie 4 Movie 5 · · ·

User 1    · · ·
User 2    · · ·
User 3  ?   · · ·
User 4    · · ·
User 5    · · ·

... ... ... ... ... ... . . .

Table 12: The movie recommendation problem in the Netflix Prize provides helpful in-
tuition for the brand choice setting. Given partially observed data on users and movie
ratings, the goal is to infer missing ratings, e.g. the highlighted entry marked in red. Pre-
dicting ratings for new movies or new users, however, is much more difficult.

The new product introduction problem can be viewed as a type of cold-start problem

but with two key differences: (1) demand-side substitution and (2) supply-side competi-

tion. If we observed sales data on brands aggregated across different markets, as shown in

Table 13, introducing a newproductwill cause consumers to substitute away from existing

products. This introduces a dependencewithin rows of Table 13 thatwas not present in the

movie recommendation problem. Furthermore, firms would adjust prices to a new equi-

librium after entry, creating additional dependence between a new product and existing

products. Note that I use “brand” and “product” interchangeably following convention

Brand 1 Brand 2 · · · Brand J
Market 1 10 12 · · · 9
Market 2 3 16 · · · 7

... ... ... ... ...
Market T 8 3 · · · 12

Table 13: Hypothetical of aggregate sales across markets by competing brands within a
product category. In contrast with movie ratings, entries within a row are dependent due
to substitution by consumers and strategic behavior by firms (e.g. pricing). These effects
must be included when modeling the entry of new brands.
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in the brand choice literature, though this assumption can be relaxed.

Fortunately, existing structural methods provide guidance for modeling these eco-

nomic effects (Berry (1994), Berry et al. (1995)). Once demand primitives (i.e. consumer

preferences) are estimated, prices are obtained by assuming firms behave optimally, and

quantities are obtained by entering these prices into the demand model. To predict sales

after a new product is introduced, it thus suffices to predict the demand-side primitives

for the new product. Then we proceed with our modification of standard demandmodels

to include text data.

E Uncertainty Quantification

I quantify the uncertainty of my predictions using conformal inference. The simplest im-

plementation of conformal inference only relies on an exchangeability assumption on the

residuals to derive valid prediction intervals (Lei et al. (2018)). Some issues arise with

this method due to the test set data being different from the training set data, so I explore

whether Bayesian approaches to uncertainty quantification can do better. I implement

several methods, and the only one that improves the calibration of uncertainty is training

an ensemble of predictors and using the across-model standard deviation. As discussed

in Lakshminarayanan et al. (2017), this procedure can be viewed as an approximation

to the posterior predictive distribution. Two other methods I implement are repeatedly

sampling from the fine-tuned LLM, as it should define some posterior distribution, and

introducing randomness by randomly dropping out a fraction of the nodes in the LLM,

which was shown to approximate sampling from a Bayesian posterior in Gal and Ghahra-

mani (2016). These latter two methods do not help. I evaluate the performance of all of

these methods by the width and coverage of their respective prediction intervals.

Intuitively, we want our methods to capture the notion that uncertainty should be

higher when the input text is “more different” from the training data. In the literature,
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this is sometimes called “epistemic” uncertainty to contrast from “aleatoric” uncertainty

arising due to noise. I expect that epistemic uncertainty will not be an issue for validation

set uncertainty but will pose a challenge for test set uncertainty. The input text in the test

set is never seen during training, which is an extreme form of covariate shift. This violates

the underlying assumptions that guarantee coverage of methods like conformal inference,

and I measure the severity of these violations empirically.

Suppose we have generated a prediction δ̂new for new text input xnew. To use this pre-

diction for decision-making, some measure of the uncertainty of the prediction is helpful.

That is, we want a prediction interval Ĉα such that Pr(δ̂new ∈ Ĉα) ≥ 1− α for any α.

Split conformal inference (Lei et al. (2018)) constructs Ĉα from the distribution of

residuals. It requires splitting the available data into training and calibration sets, and

training the predictive model on the training set. Then, for each data point in the calibra-

tion set (xjt, δjt), the absolute value of the residual from the predictivemodel is computed:

Rjt := |δ̂(xjt)− δjt|

LetRnew be the absolute value of the residual for the new input xnew. Rnew is unknown,

but under the assumption that the joint distribution of (Rjt, . . . , Rnew) is exchangeable, the

rank ofRnew will be uniformly distributed among the calibration set residuals. Or inmath,

if there are N points in the calibration set,

Pr(Rnew ≤ ⌈(1− α)(N + 1)⌉ largest Rjt) ≥ 1− α

⇐⇒ Pr

(
Rnew ≤ ⌈(1− α)(N + 1)⌉

N
quantile of Rjt

)
≥ 1− α

This is the (1− α)th quantile of Rjt with a finite-sample correction. Denoting the value of

this quantile by q̂1−α, our prediction interval for δ̂new is [δ̂new − q̂1−α, δ̂new + q̂1−α].

I evaluate these prediction intervals in terms of their width and coverage on both the

validation and test set. The calibration set is obtained by randomly sampling half of the
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original validation set, with the remaining half used for validation. I present results for

the width and coverage that are averaged over 30 draws of the calibration set. As shown

in Figure 22, higher confidence requires wider prediction intervals. Making a prediction

with 95% confidence requires a margin of ±0.8 (for reference, the average magnitude of

δjt is 3.66). Models that attain smaller residuals (i.e. they predict better) will also achieve

tighter prediction intervals. The untuned LLM has the widest intervals, as it has the least

accurate predictions, and the other 3 models have narrower intervals.

In Figure 23, I plot the coverage, which is the proportion of actual δjt values that are

contained in the prediction interval. In the validation set, this probability equals 1 − α

for all models, indicating that the exchangeability assumption on the residuals of the val-

idation set is reasonable. In practical terms, this means that the uncertainty estimates for

predictions involving existing brands can be trusted for decision-making.

In the test set, the untuned LLM has reasonable coverage, but its point predictions are

too inaccurate to be used for downstream decisions. The other models have coverage less

than 1−α, i.e. they are overconfident in their predictions. This arises due to a severe case of

distribution shift where the test set is very different from the training set, which violates

the exchangeability assumption justifying the validity of conformal inference. This under-

coverage issuemotivates a Bayesian approach to uncertainty quantification that could bet-

ter capture the epistemic uncertainty from extrapolating outside of the training data.

I now investigate whether alternative methods of quantifying uncertainty can improve

test set coverage. Suppose that our predictionmodel returned both a point prediction δ̂(x)

and an uncertainty prediction σ̂(x). As before, I split the available data into training and

calibration, but this time I compute the normalized residual for each data point in the

calibration set (xjt, δjt):

R̃jt :=
|δ̂(xjt)− δjt|

σ̂(xjt)
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Figure 22: The width of the prediction interval from conformal inference as a function of
the level 1−α. Higher confidence requires wider intervals. Making a prediction with 95%
confidence requires a margin of about ±0.8. For reference, the average magnitude of δjt is
3.66. The untuned LLM has the widest intervals because its predictions are least accurate.

Letting q̂1−α be the ⌈(1− α)(N + 1)⌉
N

quantile of R̃jt, the prediction interval for input x is

Ĉα = [δ̂(x)− q̂1−ασ̂(x), δ̂(x) + q̂1−ασ̂(x)]

In words, the uncertainty prediction σ̂(x) is scaled by q̂1−α to achieve the desired level. If

σ̂(x) is larger for values of x outside the support of the training distribution, coverage in

the test set should improve.

I obtain uncertainty estimates σ̂(x) by training an ensemble of base models and com-

puting the standard deviation across their predictions. The point prediction is the average

of their predictions, as is standard practice. Measuring the variation across base models

was shown to effectively capture uncertainty in Lakshminarayanan et al. (2017), and the

intuition is that each base model approximates a draw from the posterior predictive dis-

tribution. To evaluate whether this method improves coverage, I train a random forest,
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Figure 23: Coverage of the conformal inference prediction intervals in the validation and
test set. The intervals have correct coverage in the validation set, but under-cover in the test
set. The test set is very different from the training data, which violates the exchangeability
assumption in conformal inference.

which is a simple ensemble model, on the activations of the last layer of an LLM. I com-

pare twomethods for computing prediction intervals: (1) split conformal inference on the

prediction residuals, and (2) scaling the across-tree standard deviation by quantiles of the

normalized residual. Since the point prediction is the same in both methods, any differ-

ence in coverage is due to the way uncertainty is quantified. For the LLM, I use the 2B

parameter Gemma 2 model from DeepMind (Gemma Team (2024)). Its absolute perfor-

mance is worse due to its small size, but it is sufficient for evaluating relative performance.

In Figure 24, both methods of computing prediction uncertainty give the same inter-

val size in the validation set, but the ensemble method gives larger intervals in the test set.

This is desirable because the test set contains data points that were unseen during training,

so the model should be less sure. Consequently, the ensemble attains better test set cover-

age, as shown in Figure 25. While the coverage is still less than 1−α, the magnitude of the

under-coverage is halved, which is significant progress. Finally, Figure 26 plots the em-
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Figure 24: Validation and test set prediction margin from two methods: taking quantiles
of residuals (“conformal”), and scaling the across-model standard deviation from an en-
semble (“ensemble”). Ensemble correctly gives larger intervals in the test set.

pirical CDFs of the σ̂(x) values from the ensemble method in the validation and test sets.

The test set distribution first-order stochastically dominates the validation set distribution

– it is larger in every quantile. This is what we should intuitively expect of the prediction

uncertainties, but other methods I tried (repeated sampling from the fine-tuned LLM and

Monte Carlo dropout) failed to demonstrate this property.
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Figure 25: Coverage of the prediction intervals in the validation and test set from two
methods applied to the same model. Ensemble-based method improves coverage in the
test set.

0.5 1.0 1.5 2.0

σ̂(x)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
or

ti
on

CDF of σ̂(x) values in validation and test set

Validation

Test

Figure 26: Distribution of validation and test uncertainties obtained from the ensemble.
Every quantile is bigger in the test set, reflecting the increased uncertainty from making
predictions on inputs that were not seen during training.
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